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A recently proposed evolution equatipviaienti et al., Physica D85, 405(1994)] for the probability density
functions (PDF’s) of turbulent passive scalar increments obtained under the assumptions of fully three-
dimensional homogeneity and isotropy is submitted to validation using direct numerical simyR2h3)
results of the mixing of a passive scalar with a nonzero mean gradient by a homogeneous and isotropic
turbulent velocity field. It is shown that this approach leads to a quantitatively correct balance between the
different terms of the equation, in a plane perpendicular to the mean gradient, at small scales and atlirge Pe
number. A weaker assumption of homogeneity and isotropy restricted to the plane normal to the mean gradient
is then considered to derive an equation describing the evolution of the PDF'’s as a function of the spatial scale
and the scalar increments. A very good agreement between the theory and the DNS data is obtained at all
scales. As a particular case of the theory, we derive a generalized form for the well-known Yaglom equation
(the isotropic relation between the second-order moments for temperature increments and the third-order
velocity-temperature mixed moment§ his approach allows us to determine quantitatively how the integral
scale properties influence the properties of mixing throughout the whole range of scales. In the simple con-
figuration considered here, the PDF’'s of the scalar increments perpendicular to the mean gradient can be
theoretically described once the sources of inhomogeneity and anisotropy at large scales are correctly taken
into account[S1063-651X99)02108-X]

PACS numbds): 47.27.Gs, 47.27.Ak, 47.27.Eq

[. INTRODUCTION anomalous scaling laws, has become a major challenge. Sev-
eral “phenomenological models,” from the Kolmogorov
Understanding the statistical and dynamical properties ofnodel (K41) to the refined similarity hypothesi®RSH) [5],
high Reynolds number turbulent flows is currently the sub-or the multifractal mode[6], tried, with more or less suc-
ject of many investigations. Kolmogorov thedfyl], hereaf-  cess, to refine the predictions qualitatively and quantitatively
ter referred to as K41 has provided some major insight in for the velocity scaling law exponentsee Ref.[7] for a
this field. It assumes local isotropy in high Reynolds numberecent review Recently, a general analysis of the turbulent
turbulent flows. The K41 theory successfully predicts thecascade was proposed in Rf]. A canonical distribution of
structure of the two-point correlation function of the velocity velocity differences at any scale was introduced, with the
field in the inertial range, intermediate between the largéhelp of a conserved quantity throughout the whole scale
anisotropic scales, where energy injection takes place, anéinge. Several of the previously mentioned models can be
the small scales, where viscosity is important. Local isotropyrecovered as particular cases in this general formulation. A
for the inertial range signifies simply that all the statisticalphenomenological description of the statistical properties of
properties of the field are invariant under any rotation directhe cascade was also presented in Fa#f.providing an evo-
tion. In particular, this property implies the independence oflution equation for the probability density function of the
these scales with respect to the large scale forcing, in generaélocity increment. A method to extract the exponents cor-
anisotropic and very specifioonuniversgl The K41 theory responding to the various irreducible representations of the
leads to a scaling law for the velocity increments, rotation group was proposed in R¢L0], therefore address-
=((u(r)—u(0))P)~ e3P when the separationis in the  ing the issue of isotropy in turbulent flows. Alternatively, in
inertial range, and where is the mean dissipation rate. Ac- [ 11l anomalous scaling exponents for the dynamic field
cordingly, these moments should generally determine selfVere obtained, by taking into account the interaction be-
similar probability density functionéPDF’s). tween r_andom and large-scale coherent components of a tur-
The K41 theory, originally derived for the velocity field bulent field.
was later naturally extended to the passive scalar field, by Generally speaking, the passive scalar field was found to
Oboukhov[2] and Corrsin[3]. Indeed, it was reasonable to €xhibit a more anomalous behavior than the velocity field
argue that the passive scalar properties would be completelyt2], being in this sense “more intermittent than the velocity
determined by the driving field behavior. field.” Specifically, the probability density functions
Significant deviations of the high order velocity moments(PDF’s) associated with the inertial and dissipative scales
from the K41 predictions were found experimentdy. Un-  deviate from self-similar behavior, and present wider than
derstanding these deviations, attributed to the phenomenaxponential tails more pronounced than those for the velocity
called “intermittency,” and predicting the corresponding field.
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Several models have been proposed to explain passiveen addressed for different Reynolds numbers Re, and in
scalar intermittency. Essentially, the models developed fodifferent flow geometries. The flows used both in experi-
the dynamic field were also “translated” for the passive sca-ments(a slightly heated turbulent boundary layer and at the
lar field. This implicitly supposes that the scalar field auto-center of a von Kaman swirling flow, with an imposed tem-
matically inherits some properties from the advecting flow.perature difference between the two disksid in DNS(a
Thus it is traditional to think that the passive scalar “internalhomogeneous isotropic velocity field with a mean scalar gra-
intermittency” is due to the dissipation rate fluctuations for dieny show a significant degree of large-scale anisotropy,
both kinetic energy and scalar variard8,14. Most theo- ~ Which may contaminate the small scales, whereas [2&f.
retical models of internal intermittency are based on variou§iSSUMES Isotropy. o o
assumptions for the dissipation rate variation through the In the case of the von Kenan swirling flow, however, the
scales. For instance, the RSH theory was adapted for tH€Mmperature increment skewness in the center of the cell
temperature field15]. Alternatively, a lot of attention has could be nearly zero, contrary to what generally happens in
been paid to analyzing, theoretically and phenomenologishear flows. This suggests that isotropy is a good approxima-
cally, the anomalous scaling exponents of the temperaturdon in this case, and it was indeed found that the theory
structure functionsS,,(r)=((A 6)?") [16,17], with reason- developed in Ref[28] is valid in a high Reynolds flow
able success. (R\~600), over a significant subdomain of the inertial range

A different approach to the problem was proposed by[32]- In the case of the boundary layer, of the mixing by an
Kraichnan[18—20, who considered mixing by a Gaussian, hqmqgeneqqs flow with a mean scalar_ gradient, or of the von
white in time velocity field. The problem then reduces to aKarmen swirling flow, only the PDF’s in the plane perpen-
closed(Hopf) equation for theN-point correlation functions _dlcular to this mean scalar gradient were analyzed. Hoy\(ever,
of the scalar[20,21. A mathematical understanding of in the case of the boundary layer, PDF's and conditional
“anomalous exponents” has emerged from the study of2Verages are not symmetric, as they should be if thg statistics
these equationi22—24. Anomalous scaling laws were ef- Were isotropic. They had in this case to be symmetnzgd, as a
fectively found for moments of ordéd=4, and even for the palliative for the 3D isotropy. With thl$ procedure, it was
third moment in the presence of a mean gradi@®,25. found thgt the range of.scales over WhICh the theo'ry Qf Ref.
Remarkably, a simple Gaussian velocity fighb intermit- ~ [28] applies(the “validation domain’), includes the dissipa-
tency can induce an intermittent behavior of the passivelive and small inertial scalef33], until limits which were
scalar. found to be 56 [ n=(v»% €)Y is the Kolmogorov length

An alternative way to study intermittency effects is to scald for a slightly heated boundary layer, witiR,
investigate the PDF evolution through the scales. It is known=Au’/v~200, or 3Q; in the DNS with a homogeneous iso-
that large—scale PDF’s are in general Gaussian, when thHeopic velocity field and a mean temperature gradient, with
boundaries direct influence is negligible. However, large-R,=82 (whereu’ is the velocity rms, and is the Taylor
scale temperature increment PDF’s are not always Gaussiamicroscalg. Although the results of Ref33] are very en-

For instance, in Ref[26] these PDF’'s were found to be couraging, important questions regarding isotropy remain to
sub-Gaussiarwith a kurtosis equal to 2.3, smaller than the be addressed. This question is particularly important, as most
“Gaussian” value of 3, whereas, in Ref[27], the large- flows do exhibit a significant anisotropy.

scale PDF's were super-Gaussian. These results are due tolsotropy issues have been extensively studied in different
different values of the ratio of the turbulent integral scale toflow configurationd34—39. A quantitative characterization
the tunnel width(for the physics of this anomalous diffusion of isotropy turns out to depend on the test that is U<
process, see Ref21]). The mixing we analyze in this paper In order to link inertial range anisotropy to the large-scale
presents a Gaussian large-scale temperature PDF. properties qualitatively and quantitatively, we need to distin-

The question is then to understand how exponential tailguish first between different “energy injection processes,”
appear for the smaller scales, starting, for instance, from which are specific to the large scales of each flow.
Gaussian distribution at large scales. A new approach in this Specifically, one has to distinguish between non-
direction was developed in R€i28]. The basic objective is homogeneous scalar injection, as happens, e.g., when a
to develop a theory able to predict small-scale behavior ofarge-scale temperature difference is applied across the sys-
PDF's starting from their large-scale counterparts. The probtem, resulting in a large-scale gradient, stationg8§] or
lem can be formulated as a partial differential equation indecaying in time, and homogeneous scalar injection, as is the
two variables—separation and passive scalar increment-case for grid turbulence heated with a mandoline, the jets or
involving two conditional expectation(®f the velocity incre- the wakes on their axis. The former is known to lead to a
ment, and of the squared passive scalar gragighese con- large anisotropy, whereas the latter is essentially isotropic.
ditional expectations have either to be provided from In fact, the equation developed in R¢28] was investi-
experiments or direct numerical simulati0BNS), or to be  gated for different mixings with the same injection charac-
modeled 29]. The basic weakness of this theory appeared tderistics: a mean temperature gradient applied on the large
be the assumption of local three-dimensiof@D) isotropy  scales. It is not very surprising that a large-scale nonhomo-
for the passive scalar explicitly used in the derivation of Ref.geneity and anisotropy could influence the statistics up to
[28]. The well-known Yaglom equatiof80,31], relating the  relatively small scales. On the other hand, in a large-scale
second-order moments to the third-order moments, of thGomogeneous and quasi-isotropic mixing, like a heated grid
temperature increments results from the PDF evolution equdtrbulence, one has to take properly into account the nonsta-
tion. tionarity of the flow, in order to close the relation between

The issue of validity of the 3D isotropy assumption hasdifferent moments of temperature incremé#t]. Our gen-
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eral aim is, for finite Reynolds numbefsonsequently when ratio of the molecular diffusivityk, to the kinematic viscos-
strict local isotropy generally does not hpldo understand ity v will be referred to as the Prandtl number Pr.

how the large scales and the energy injection manner influ- We now briefly present the strategy used to derive the
ence the inertial range evolution of different statistical quan{PDF equation. The method is similar to that employed in
tities. In this paper, we investigate some of the mixings pre-Ref.[42] to obtain the PDF of the temperature itself. We will
sented before, especially their isotropic properties, anédopt the same procedure in this wgBec. Il), in order to
analyze further the theory developed in R&8], or its sim-  obtain the PDF evolution equation through the scales when
pler form: Yaglom’s equation. We consider mainly the prob-isotropy holds only in planes perpendicular to the mean gra-
lem of mixing by an homogeneous isotropic flow, with a dient. The starting point is naturally the heat-transfer equa-
nonhomogeneous scalar injection. This case is more compléion:

than grid turbulence, but less complex than shear flows with

a mean temperature gradient. DNS is a convenient way to a0 . - - 2,2

produce such a flow configuration and to measure all the 5 DUV, =keVO(x,1),

guantities[37] necessary to test our predictions. We study

the statistical properties in a fixed plahk perpendicular to written in a pointi at time t. We are then interested in

g’ thf scallartﬁ_radllent, l_v[vhe_r@ IS ﬁ)ar?gel_totthe spfa:;]al temperature incremenlS=A0(>?,F,t). The main steps of the
irection z. In this planell (z=consy, the isotropy of the mathematical development are the following.

scalar field has been shown numerically to be satisfied, by . ) ) -
comparing the properties of the various moments of the tem- (1) We consider a general test, scalar functgiX,r). In

perature derivatives in the directions perpendicular to thé@rticular, this function could be tih-order f even tem-

gradient. This is in sharp contrast with the derivative parallePerature incrementX(6)". _ _
to the large-scale gradief7]. (i) An operatorDg; is defined, which applies the opera-

To investigate how anisotropy is associated with the inte!0rs involved in the heat-transfer equation to the funcgon

gral scales, we relax the 3D isotropy assumption and simply

assume that the scalar is isotropic in the plah@ormal to ag(AB(X,1 1)) N

the mean temperature gradient. In Sec. Il, we first present [ (x.r.0)= ot u(x,t)-Vgaa(x,r.t),r
some results concerning the theory based on the 3D isotropy o

assumption in order to provide data for comparison with re- —KkoV2g(AO(X,r,1),r).

sults obtained using the 2D isotropy theory. We emphasize

that for relatively small Pe Rex Pr (Pr=v/kg), the equa- (ili) When developed, the right-hand side can be simpli-

tion works well only for very small scales. In Sec. lll, we fied using the heat-transfer equation yielding a new equation.
present the hypotheses and the theoretical considerations thEte statistical averages of both sides of the obtained equa-
permit the derivation of a new evolution equation for thetion are calculated using the following hypothesg$:sta-
PDF's of passive scalar increments, which takes into accouritonarity of all statistical averages arfi) three-dimensional

the mean temperature gradient. The closure needs five cohomogeneity and isotropy. The latter can be expressed math-
ditional averages. Some of them explicitly contain the largeematically by the specific form of the operators gradient and
scale anisotropy. In Sec. IV, we discuss the five conditional aplacian applied on the isotropic increment veator
expectations obtained numerically. Finally, in Sec. V, we

deduce a new Yaglom equation as a particular case of the 1
PDF equation based on the 2D isotropy. The validity of this Vi=—
Yaglom equation is verified for various Pe numbers of the
mixing and the balance between the terms is investigated. As .
shown in Sec. V, once the isotropy assumptions are adaptesherer =|r|. These hypotheses and the corresponding alge-
to a real situation, the PDF equation becomes a reliable todiraic manipulations are very similar in spirit to the one used
for extrapolating small-scale PDF’s from those obtained ain Ref. [31]. The final form of these developments is the
large scales, and the original objective of Rg#8] can be functional equatioq 7(g))=0, whereF is the functional of
achieved. g,

14
2 9r

-

Il. PDF'S IN THE CONTEXT OF A THREE-DIMENSIONAL f g&(P(r,X))dX=0, Vg, (1)
ISOTROPY

In this section, we present the numerical verification ofequivalent, in the distributive sense, to the equation
the “evolution” equation for the PDF’s of passive scalar
increments derived in Ref28]. We demonstrate that this E(P(r,X))=0,
equation provides an accurate description of the PDF of sca-
lar increments in a planEl perpendicular to the mean gra- considered as the partial differential equation for the prob-
dient, and that the quantitative agreement becomes bettability density functiorP, depending on the modulusf the
when the scale becomes smaller and the Reynolds numbspatial displacement and the stochastic variabtepresent-
becomes larger. ing the temperature incremeAty. Let us note that the same
In the following, without loss of generality, we use a ter- approach was used in Ré#2]. The resulting equation then
minology referring tod as the temperature. In this way, the reads, explicitly,
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P pr: geneous and isotropic turbulent velocity figl8i7,33. Isot-
F+ o [P(r,X)ql(r,X)]+2ko—2[P(r,X)q2(r,X)] ropy implies that all the quantities involved in E) are
X even functions ofX: P(r,X)=P(r,—X), q.(r,X)=q4(r,
2 g —X), andqy(r,X)=q,(r,— X). If the mixing is not isotro-
=2k, F+ m W(r,X), (2) pic, these constraints do not hold.

The experimental conditional expectations were therefore
where P(r,X), q,(r,X), andqg,(r,X) are the PDF of tem- Symmetrized to provide closure functions consistent with the
perature increment, the conditional expectation of the velocisotropic theory{33]. Still, the parity of the functions does
ity increment, and the squared temperature gradient condRot guarantee isotropy, so the results we obtain for the analy-
tioned by the temperature increment, respectively. It issis of this equation remain, in spite of this symmetrization,
convenient to use a dimensionless version of Bgby using  very sensitive to the isotropy of the experimental or DNS
the rescaled variables=r/\,, u=u/u’, and X=X/¢’  data.

where\ ,= 9'/<((99/07x)2>1/2 is the temperature Taylor scale  TO provide a basis for comparison with our following
(also called Oboukhov-Corrsin microscgl®’ is the tem-  proposed 2D isotropy theory, we now present results of the
perature rms. Thereafter we drop the tilde: 3D equation, showing to what extent E®) is verified for

Reynolds number®, =40 and 70 and Prandtl numbers Pr
2

Pe2 o4 =0.5 or P=1 keeping a fixed mean temperature gradient
> tar [P(r,X)ql(r,X)]JrE[P(r,X)qz(r,X)] G=1. All the quantities are made dimensionless with respect
to the computational domain size. In order to determine the
2 J|dP velocity and temperature fields numerically, the Navier-
=lrt ar E(r,X). 3 stokes and heat-transport equations are solved using a stan-
dard pseudospectral code. The boundary conditions for ve-
Equation(3) is then written symbolically as#ll=Ill, the  |ocity and temperature are periodic in the three directions.
three te_rms I, 1, and Il referring to the three terms as theyrhe computational domain is periodic with a length,Zon-
appear in Eq(3). taining 128 points. A good statistical convergence could be

The well-known Yaglom 2equat|on can be simply obtained,chieved by averaging for about six eddy-turnover times. In
from 1 by choosingg=(A )", and by integrating once with o, cajculations, we have checked that the moments of the
respect ta. Yaglom's equatiori30] simply reads scalar derivatives in directions perpendicular to the gradient

d 4_ do not depend, up to statistical errors, on the precise direc-
—((Au)(A 9)2>+2koa<(A 0)2)=§Nr, (4)  tion in the plane parallel. More details about the numerical
method used in this work can be found in Rg7]. Let us

hereN=k-((V 6)2). Equation(4) i itten for simplicit con§ider a first case with the following pa}rgmeters: .
\;VSXTB:CO« 6)")- Equation(4) is written for simplicity (i) R,=40, Pr=1, G=1. The characteristics of the mix-

The three terms I, II, and IIl have the same origin in the!"9 @€ ko=»=0.012, the rms of temperature fluctuations
heat equation, and the same physical interpretation as tHf¢ = 1.79, the Oboukhov-Corrsin microscalg=0.235, and
three termsA, C, andB (in this ordej. Yaglom’s equation the Kolmogorov scalg of _the -turbulent dynam|g field
represents an energy balance. Terms | Armbme from the ~ 7=0.057. The nondimensionalizednot symmetrizeyd
advection term in the heat transport equation; they represegpnditional  expectations ql=PqH/2<Au/A 6) and d,

the energy transfer through the scales by the turbulent pro- A%{(V 6)?/A 6), obtained from DNS data, are presented in

cess. Fig. 1. For simplicity, we will further notej; andq, asq;

_ Term Il comes from a part of t_he molecqlar diffusion, and andqg,. All the conditional expectations, terms in E&) or
it represents a large-scale diffusion. Te@nits counterpart, (4) analyzed thereafter are dimensionless

is the mean energy transfer rate between the scales. Finally, The PDF’s obtained from DNS data in the plane perpen-

terms Il andB both are the expression of the m°|eCU|ardicuIar to the mean gradient are presented in Fig. 2. The

d|ﬁg§|on, tr;nd theyfare L)reste)nt atjm_all gcalgs o?k:y. figure reflects well the evolution from a large-scale Gaussian
Ince the equation has been gerived using the assUMpy, gya)1-scale PDF with typical exponential tails.

tions of homogeneity and three-dimensional isotropy, the Usi , i :
" ) sing these PDF’s and conditional expectations, we
PDF P(r,X) and the conditional expectation of the squaredverify Eq. (3), by simply computing the three terms. As

temperature gradienti,(r,X)=((V6)?/A6) depend onr (il in Ref[33] (see Fig. 2 of Ref33]) the residual of the
:|r| Only. In addition, since the conditional eXpeCtation of equation is maximal ak=0 , SO we present the equation
the velocity increment is isotropic{AJ/A 0>=q1(r,X)F/r, verification atX=0 only. Although a nondimensionalization
andqq(r,X) is thus easily amenable to measurements as it isising the Oboukhov-Corrsin microscale, appears to be
the conditional expectation of the longitudinal velocity incre- more convenient for the numerical treatment of the equation
ment. The closure problem then consists in determining thg€33], the results are represented in termsrb#. Figure 3
two scalar functionsj,(r,X) andqg,(r,X). shows that the equation is verified only fos 7 » indicating

The conditional expectationg,(r,X) andg,(r,X) were the lack of isotropy at larger scales. The reason for this is the
previously determined in two cases: from our measurement&rge discrepancy between the “turbulent transport” term |
in a boundary layer over a heated wigb], and from DNS  that tends rapidly to zero at large scales, and the “diffusion”
of a passive scalar with a mean gradient mixed by a homoterm |l that remains almost constant for large scales. These



PRE 60 PLANAR ISOTROPY OF PASSIVE SCALAR TURBULEN. .. 1695

30 0.3

0.2
25

g
&
-1 20 <
=3 o 2
-2 15 2
-3 10
B P T R TR 5
'5_5 0 5 0 rm

X X FIG. 3. X=0 evolution for the three terms in E¢3), at R,

=40 and P#=1. The term II(O) is to be compared to [HI (@).
FIG. 1. Conditional expectatiortg, (left) andq, (right), for the

scales 3.5, 77, 177, and 347, atR,=40 and Pr1. present the computed conditional expectations, and in Fig. 5

the PDF’s obtained by treating the DNS data in the direction
features are not surprising since they are obviously assocharallel to the mean gradie.

ated with the widely documented behavior of Yaglom's' one can notice the strong asymmetry of the represented
equation[43]. As Fig. 10 will illustrate it, the termC  quantities indicative of the strong anisotropy in this direc-
=4Nr which is associated with the term Il of E8), re-  tion. The trend of the two conditional expectations and the
mains unbalanced at large scales, when the turbulent tranBDF’s to become symmetric at the smallest scale 4Bis,

port term A= —(Au(A6)?) becomes small. Note that this nevertheless, clear. This behavior demonstrates the aniso-
term A was modeled in Ref20] in terms of an eddy diffu- tropy in the mean temperature gradient direction, and moti-
sivity characteristic of the dispersive properties of the velocvates the investigation of the mixing when isotropy holds in
ity field alone,a la Richardson planes only.

All the above quantities have been computed in the plane The effect of the Prandtl number has been investigated by
normal to the mean gradient. In experiments, e.g., in a heatecbmparing the first case abovEigs. 1-3 to that with Pr
boundary layer, this should correspond to data obtained by-0.5. The conditional expectatiommg andq, are presented
treating the cold wire measurements using Taylor's hypothin Fig. 6, and the PDF’s in Fig. 7.
esis. Using the same DNS data we can also check what hap- Though the conditional expectatiogs andq, are more
pens in the direction parallel to the mean gradient. It appearsymmetric for a smaller Prandtl number, E8) is even less
that, in this case, Ed3) does not hold even for the smallest verified in this case. This is associated with the fact that the
scales. Anisotropy affects even the dissipative scales in thiBeclet number Pe is smaller, so that the imbalance of(By.
direction, as already emphasized in R&7]. In Fig. 4 we  for large scales is strongésee Fig. 8.
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FIG. 2. PDF’s in the plane perpendicular to the mean gradient FIG. 4. Conditional expectatiorts; andq, for the scales 3.5,
for the scales 35, 7%, 17, and 34y, using a linear scaldeft) 77, 175, and 34y, in the direction parallel to the mean gradient, at
and a logarithmic scaléight), at R, =40 and P#1. R, =40 and P+=1.
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FIG. 5. PDF's for the scales 35 77, 175, and 34y, in the FIG. 7. PDF’s for the scales 35 77, 175, and 34, at R,
direction parallel to the mean gradient,Rt=40 and P+1. =40 and P#0.5.

In contrast, a higher Reynolds number modifies the velocthat for Eq.(3) taken atX=0. (See Fig. 3. The conclusion is
ity field by extending the inertial zone so that isotropy thenthat Yaglom’s equation is a good indicator of the validity
appears to be verified for larger scales in terms of the Koldomain for Eq.(3), being obviously less complete, but sim-
mogorov length scale. Another way to write E(B) is  pler than the equation for the PDF’s. Yaglom’'s equation

(I =D/M=1. Thus, comparing the terrgill —1)/1l with the does not contain any intermittency effect, but it is a useful
value 1 is a compact way to emphasize the validation domeans to investigate isotropy.
main for the equation as a function of thecRe number of The general conclusion of this section is that, for finite

the mixing. Figure 9 represents such a result,Xer0: the = Reynolds numbers, the equation which assumes 3D isotropy

larger the Pelet number is, the better the equation is veri-allows us to determine quantitatively the PDF shapes in the

fied. We note that, for Pe82, the approach becomes better plane perpendicular to the mean gradient, but only at small

for the scales smaller that 0 with an error of about 20%. scales and large "Blet number. Important deviations are
In this sense, the direct influence of the large scale anisdound at larger scales, in the upper part of the inertial range.

tropy diminishes as one reaches smaller and smaller scald$. order to investigate the laws governing the evolutions for

Equivalently, the range of scales where the equation is valithe large inertial scales, in Sec. lll we develop an approach

increases when the Elet number increases. which assumes small-scale isotropy only in planes perpen-
As already mentioned, Yaglom’s equati6$) is obtained  dicular to the mean gradient.

as a particular case of the approach; moreover, it is easier to

verify the second-order relation between the moments. Equa- 1ll. CONSEQUENCES OF ISOTROPY RESTRICTED

tion (4), rendered dimensionless using the same quantities as TO A PLANE

for Eq. (3), is analyzed through the data reported in Fig. 10.

We can note that the disagreement with the full isotropy Section II(s_ee also Re1[33]) demonstrate_zd that the ISot-
e, . , . L ropy assumption for the mixing of a passive scalar with a
predictions in terms of Yaglom’s equation is very similar to
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FIG. 8. X=0 evolution for the three terms involved in E®),
FIG. 6. Conditional expectatiorgs, andq, for the scales 3.5, atR,=40 and P+0.5. The term 1I(O) is to be compared to I#1
77, 179, and 34y, atR, =40 and P=0.5. (@).
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1.2 ; ; i ; ; ; The variable X describes the value of incremen¥
: : : : : : =A0(X,r,t)=6(x+r,t)—6(x,t), wherer is the separation
vector. We define

ag(A 0(x,r,t) )

p UK, Vg O(XT,1),r)

Dg](x,r,t)=

VAT

—koVEG(AO(X,T,1),T). (5)

Using the equation of evolution for a passive scalar,

a0 . > > >
—r D HUCD - V206D ~koVE 0D =0, ()

5 10 15 20 25 30 35 40
" and elementary algebraic manipulations, one finds

FIG. 9. X=0 evolution for the ratidlll —1)/1l in Eq. (3), which
should be compared with the value 1, function of the scalesfor .- a9 e e e -
different Pelet numbers: Pe20 (A), Pe=40 (), Pe=70 (¢), Dlgl(x,r,t)=— &_X(A O(X,r,t),NAU(X,r,t)- Vio(x+r,t)

and Pe=82 (@).
2

mean gradient leads to a good balance between the terms in —koZs2 (A 6(x,r,t),N[VA6(x,r,1)]% (7)
the equation describing the evolution of the PDF’s of scalar
increments in a plane perpend|cular to the mean gradient, at
small scales and at large @et numbers. Our approach,
however, does work at all for scalar differences parallel to
the mean gradient. This shows the limitations of the 3D iso- that the flow properties are homogeneous in plafiks
tropy assumption for the problem studied, and suggests, in- =cst This isa priori compatible with a mean velocity pro-
stead, a weaker isotropy assumption considered only in fle U=(Ux(2),Uy(2),U,(2)). We found, however, that in
plane perpendicular to the mean gradient, or, in general, pethe simplest possible shear flow,= (Sz0,0), the isotropy
pendicular to the anisotropy direction. The purpose of thisof the scalar ire=cst planes was not a good approximation
section is the derivation of the equation of evolution for theat all, and we restrict ourselves here to the case where the

PDF's, assuming isotropy only in planes perpendiculaBto Mean velocity profile is uniform, and the flow is homoge-
neous and isotropic. In the following, we will simply com-

hereAu(x,r,t) u(x+r t)— u(x t).
We consider statistically stationary flows, and we assume

A. Theory pute the statistical averages over the pléhe=cst
In the following derivation, we propose a more general 1
form of the evolution equation of the PDF. It is a generali- (¢)(2)= lim ?f . 2<P(>z)d>< dy. (8)
zation of the demonstration proposed in R&B] and rapidly R TN J( )<R

presented in Sec. Il. Leg(X,F) be a scalar function of a ) _ )
scalar variableX and a vectorr. We assume thag Note that the average of a gradient, in the sense of&ds

e S(R%), S being the space of infinitely differentiable rap- Non-zero:(Vf)(z)=(d,f,). The mean values of quantities
idly decreasing functions. such asD[g] are functions ok and of the separation vector

r.

Specifically, the mean value of expressi@) reads

(DLg1)(r,2) = u(x,1)g(A O(X,1,t),1))(r,2)
—kodX(g(AB(X,T,1),N)(r,2).  (9)

A large-scale anisotropy, such as that encountered in the
proximity of the solid wall in a turbulent boundary layer, is
likely to induce a strong anisotropy of all the investigated
structures. A symmetry between increments may be expected
only in a plane perpendicular to the direction of anisotropy.
For this reason, we restrict ourselves in the following to

i separation vectors in the planell normal toz: r-z=0.
5 10 20 30 40 Keeping in mind that the averaggsg. (8)] are taken only
rin in the (x,y) plane, and exchanging the orderzderivatives
FIG. 10. Yaglom’'s equation nonverification, f&, =40 and  and averaging integrals, we can rewrite the right-hand side of
Pr=1. A+B (B) is to be compared witlC (continuous ling Eqg. (9) in the following form:

10" [

Terms in Eq. (4)

-1

10
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<D[g]>(F,z)=<uz(i,t)j—i(Aa(i,F,t),F)azAa(i,F,t)>(F,z)+<azuz(>2,t)g(Aa(i,F,t),F)>(F,z)

9%g S - R g I - R
—ko a—xz(Ae(x,r,t),r)[azA0(x,r,t)]2 (r,z)—kg a—x(A0(x,r.t).r)&§A0(x.r,t) (r,z). (10

On the other hand, taking the average of Ef}, we obtain
9%g

W(A .9(>Z,F,t),F)[v;Ae(i,F,t)]2> (r,z)+(D[g])(r,z)=0.

j_f((Aa(;,r,t>,f>Aa(;,f,t>.v;amf,t)><r,z)+k0<
(1D

Combining Eqs(10) and(11), we obtain an equation whose terms can be further transformed following a general strategy
which consists in eliminating, wherever possible, the derivatives of temperature increments with respaet yo Specifi-
cally, to transform the first term on the right-hand side of BEd), we use the obvious equality

iad X+ 1t _99 X+r,t), i=12 12
axi(x r,)—ari(x r,t)y, i=1.2, (12

and the continuity equation far:
<j—§(A (X, 1), NAU(X, 1) - VRO(X+ F,t)> (F,2)
—VAGABX,F 1), DAUKLT DY, 2)— ([Vig](A 8K F 1), DAGR.FD)(T,2)
+ (AU (XH+ T, A OX,T,1),1))(F,2)+ <j—i(A9()1F,t),F)Auz(i,F,t)aza(>2+ F,t)> (F2). (13)

We proceed similarly for the other ternisee the Appendix for detajl$o arrive at

<j—§(A G(Q,F,t),F)-A[uzaze](i,F,t)> +VHGAB(X,T,1),DAUX, T2 —([V;g](AB(X,T,1),NAUX,F,E))T,2Z)

2 2
ol || S AU .07+ TS U0 (Vg W50 .21~ 2208 005,002

J S N - 1% I - I -
_<0—§(A9(x,r,t),r)ﬂgAH(x,r,t)>(r,z)—2V;<[a—)g((AG(X,r,t),r)V(X,y)H(x,t)—V;g(Ae(x,r,t),r)D(r,z)]
H(9(X, 1) d U (X+T,0))(r,2) +{g(X,1) d,u,(X,1))(r,2) =0. (14)

By A[u,d,6](x,r,t) we mean the increment of the function inside the brackets, Aja,d,6](X,r,t)=u,(X+r,t)d,6(X
+1,1) —u,(X,1)2,0(x,t). The resulting equatiofild) can now be integrated over thmevariable inR2. The free choice of
e S makes it possible to select values corresponding to a restricted neighborhood of a giverr \awdoin the limit ofg
approaching a Dirac distribution, to describe a sharp valu?embvided the corresponding mean values exist in the sense of
distributions. Integrating Eq(14) over the wholer space will make the divergence terms disappear. Let us denote the
integrals by(.): (@)= Jree(r)d?r. Equation(14) thus yields

a9 - ;>
X (XD A[U,2,0](X 1.1 ) ) (2)

2

e 9 .. .0 . .
—(<[Vr'g](A0(X,t),r)Au(x,t)))(z)+ko <<[T)(%(_Ae(x’_rvt)’r)+a_)(%(AB(X,t),r)}(V(X,y)ﬁ(x,t))2>>(z)

—2<<V§g(Ae<>2,t>,F>>><z>—< <j—f’<<Ae(>?,t>,F>a§Aa<>?,t>> ><z>} QXN FLUX, 1) Uy (X+T,D)]))(2) =0.
(15
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B. Evolution equation for the PDF
Let us introduce the stochastic variables:

X=A0(X,1,t), Y=(Y,,Yy)=(Au(XT,1),Auy(X,1,1), Z=[Vy0(x,01%

0
. (16)

S=2A0(X,rt), T=dU,(X+1,t)+a,u,(x,t), W=A U

and the corresponding PDF
P(r,z,X,Y,Z,ST,W)=P(r,2X)Q(r,2,Y,Z,S,T,WIX), (17

WhereQ(F,z,\?,Z,S,T,W/X) denotes a conditional probability. By replacing the spatiay) averages with ensemble aver-
ages, we can rewrite the mean valdés)) as follows:

(- MN(2)= f P(r,z,X,Y,Z,5,T,W)d?r dX d?Y dZ dS dT dw
As a result, Eq(15) now reads

g . N L -
f R(X,r)qg(r,z,X)P(r,z,X)dzrdx—f[V;g](x,r)ql(r,z,X)P(r,z,X)dzrdX

2
j%(X,F)[%(—F,Z,—X)P(—F,Z,—X)+q2(F,Z,X)P(F,z,X)]d2rdx

+kq
2 P(r 2 9 - c = 2
=2 V=g(X,r)P(r,z,X)d“rdX— ﬂ—X(X,r)q4(r,z,X)P(r,z,X)d rdx

+J g(X,r)qgs(r,z,X)P(r,z,X)d?r dX=0, (18)

where we have introduced the conditional expectations on the scalar increments:

01(r,z,X)=(Au/A6), (19)
02(1,2.X)=((VO)2/A0) =([(Vx0)?+(V,6)?]/A ), (20)
R 0
q3(r,z,X)=<A Uz /A0>, (21
0a(r,2,X)=(35A 611 0), (22
as(r,2,X)=(2d,u,+Ad,u,/A6). (23)

The conditional averagél is simply defined by

.o 1 — N
ql(r,z,X)=Q—f YP(r,z,X,Y,Z,S,T,W)d?Y dZdS dT dW
P(r,z,X)

and similar definitions are used for the other quantities.
Sinceg is an arbitrary test function fronS(R?%), Eq. (18) is a weak form of

—%<63<F,z,X>P(F,z,X)>+v;[61<F,z,><>P(F,z,X>]

P . . . R .
+2kom[qz(r,z,X)P(r,z,X)]—2koV§P(r,z,X)+q5(r,z,X)P(r,z,X)=0, (24

where



1700

Qa(r,2,X)=3[0a(—1,2,— X)+0,(r,2,X)] (25

and

as(F'ZaX)EkoQ4(FaZ,X)_Q3(FvZ:X)- (26)

L. DANAILA et al.
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9a(r,2,X) =ko04(r,2,X) — qs(r,z,X),

we can finally write Eq(24) as

In this form, it is clear that only four independent closure 1 J

functions arise in Eq(24). So far, we have used in the deri-
vation of Eq.(24) only the assumption of homogeneity in the

(x,y) plane. In Sec. llIC we shall investigate the conse-

guences of the 2D isotropy assumption.
It is easily seen from the definitiond6) that the prob-

ability density functionP(r,z,X,Y,Z,S,T) possesses the fol-
lowing symmetry property with respect to the reflectiorr of

P(r,z,X,Y,Z,ST)=P(-r,z,—X,—Y,Z,—ST). (27

The probability density functionP(F,z,X) thus satisfies
P(r,z,X)=P(—r,z,—X), and

al(FaZ:X): _al(_F,Z,_X),

qi(F,Z,X)zqi(_F,Z,_X), i=2,51

ai(r,zX)=—q(—r,z,—X), i=34. (28

As a resultq, in Eq. (25) is simply equal tag,.

C. Local isotropy

For an arbitrary scalar fielg and an arbitrary vector field
v depending on the space variabteshe local isotropy con-
dition in the (x,y) plane can be expressed as follows.

2D Assumption (¢)(r,2)=(¢)(r,2), (r Ir]), and
(vi)(r,2)=w(r,z)(r;/r) (i=1, and 2. The scalar function
w(r,z) is obviously equal t§(v;)(v;)]*? or, equivalently, to
(viyri/r. We shall denote({v;)(r;/r)=(v,), and write
(vi)(r)=(v,)(r)(r;/r). The stochastic variable§ Z, S, W,

= o 1ax(r,2.X)P(r,z,X)]

P
+2ko[m[q2(r,z,X)P(r,z,X)]

19

ror

P

Jd ~
= + o5 [8a(r.ZX)P(r,2.X)]

(r,z,X)

+qs(r,z,X)P(r,z,X)=0. (29)

This equation is the evolution equation of the PDF's
P(r,z,X), through the scales in the assumption of isotropy
restricted to a plane perpendicular to an axisote here that
the particular form of the operators gradiéfit and Laplac-
ian V? in the 2D isotropy hypothesigolar coordinatésis
different from their form obtained with the 3D isotropy hy-
pothesigwritten is spherical coordinates, as specified in Sec.

).

IV. CONDITIONAL EXPECTATIONS

The conditional expectations closing E(9) are pre-
sented in the following figures fdR, =40, with the Prandtl
number P+=1 and the mean gradie@=1. Conditional ex-
pectations and PDF’s necessary to test §) were com-

puted in a pIaneHié fixed (z=cst). It was found that the
results do not depend on the plane chosen, as expected from
the overall homogeneity of the numerical flow. For this rea-
son the results presented here were obtained by averaging
over the entire computational domain, which greatly im-
proved the quality of the statistics.

andT are scalars from the point of view c_)f the 2D geometry  Equations(19) and (20) show thatq, andq, are almost
in the (x,y) plane. Under the 2D assumption, the scalar functhe same as those for the 3D isotropy theory which are pre-

tions P(F,z,X), qZ(F,z,X), q3(F,z,x), q4(F,z,X), and
q5(F,z,X) are functions of only. The Laplace operator thus
simplifies toVrg:r‘l(a/ar)[r(a/ar)]. As far as the vector

ﬁl(F,z,X) is concerned, the isotropy assumption yields:

q1(r,z.X)=0q,(r,z.X)(r/r), where q;(r,z,X) is a scalar
function of r. The symmetry conditior(28) then implies:
ql(r,Z,X):ql(r,Z,_X).

As far as the scalar functions are concerned, the symmetry

relation <p(F,X)=<p(—F,—X) implies simply ¢(r,X)
= ¢(r,—X) in the isotropic case. Thus

qi(r,z,X)=q(r,z,—X), i=2 and 5
and

qi(r,z,X)=—q;(r,z,—X), i=3 and 4.

Simplifying, furthermore¥V{ o(r)r/r]=r~1(a/dr)(r ¢) and
using the notation

sented in Fig. 1. In facty, is exactly the same, being asso-
ciated with the velocity increments computed in a plane per-
pendicular to the mean gradient. The conditional expectation
g, is here the horizontal squared temperature gradient con-
ditioned by the temperature increment, thus it is proportional
to the total squared temperature gradient

d2=([(Vx0)*+(V,0)%1/A6)
=0.85%< 5([(V40)2+ (V,0)2+(V,0)2]/A6).

This relation between the horizontal squared temperature
gradient and the total squared temperature gradient empha-
sizes the fact that the mean temperature grac(ﬁahiduces
some anisotropy, the squared temperature gradient om the
direction being sensibly larger than those for the two other

directions. The conditional expectatiogs andqs, involved
in the new additional terms are plotted in Fig. 11.
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pectationsq,; and g, should be done first of all in some
simple flows. A velocity field generated by a Lundgren vor-
tex [44] presents a relatively simple expression for all its
components. It may thus be possible to introduce a scalar
blob into this flow, and to pursue its time evolution analyti-
cally, while this blob is enhanced by the vortex, diffused, and
finally completely dissipated. By knowing the velocity and
temperature distributions in each point of the space, it would
be possible to compute the different conditional statistics.
Concerning the five conditional expectations presented in
this work, a similar analysis would be obviously very diffi-
cult, asqs, q4, andgs are indeed very specific of the mixing
properties. Alternatively, an analysis of their symmetry prop-
erties was performed in Sec. IlIC. Here these conditional
expectations are simply computed, as additional information
about the mixing. Our present aim is mainly to affirm that
2D homogeneity and isotropy do influence the cascade on

FIG. 11. Conditional expectations involved in Eg9), g5 (lefty V€Y small scales.
andqs (right), for the scales 3.5, 775, 175, and 34;.

V. PLANAR ISOTROPY THEORY VALIDATION
In agreement with the theoretical constrai(@8), q; and
0. and thus als@|; should be odd functions of, whereasys
tends to be an even function. We carried out the same analy- In this section we present how the additional terms ac-
sis for R, =70, the results being qualitatively the same. Thecounting for anisotropy contribute to the total balance be-
new conditional expectations take the anisotropy into actween the terms. We consider the two criteria retained in Sec.
count. Figure 11 shows that all effects are present even in th: comparison of the balance of terms of HQ9) at X=0
simple case of the DNS of a fully homogeneous and isotroand a modified Yaglom equation resulting from E29).
pic velocity turbulent field transporting a scalar with a mean We write Eq.(29) in its dimensionless form, using the
gradient. In this case, the mean gradient is the only source ¢fame reference variables as for E8). (see Ref[33]): Ay,
inhomogeneity and anisotropy so that the individual condi-u’, and 8’. The terms appearing in E429) will be num-
tional expectations can be expected to be explicitly related tbered following the scheme:Hil 11l +1V +V=0. The va-
G. lidity of the equation atX=0 will be tested by adding the
Note here that, as was the case for the conditional expedwo new terms to the terms | and Il, and by comparing their
tationsqg, andq, used for the 3D approach, we could not sum to lIl.
derive so far any theoretical expression for these “input The five terms are presented in Figs. 12 and 13 for the
data” of the problem. They, andq, conditional expecta- caseR,=40, P=1, andG=1.
tions were determined using either experimental or DNS The cancellation of the sum of all the terms of the equa-
data, as explained in Ref33]. Their behavior seems to be tion is very well verified for all the values of, as shown in
qualitatively universal, especially for the small scales, wherd-ig. 14 for the scales=157 and 3%;.
both conditional expectations become symmetric. A first The balance of individual terms for varyingat X=0 is
qualitative tentative attempt to explain tlig “A” shape represented in Fig. 15. The 2D isotropy equation is perfectly
was made in Ref.28]. verified at all scales. The progress realized by our theory is
However, a theoretical calculation of these conditional ex-directly measurable when comparing Figs. 15 and 3. A simi-

A. Balance of the PDF equation

0.2 T 0.15 0.15

1]
0.15 O frreef- Fagee |
g | -
o i )
] 041 0.05F e oo ] <
£ : 5
= £
= 005 0 E
5 k3
'—

-0.05f

-0.05 i -0 i
%5 0 5 -5 0 5

X X

FIG. 12. The terms I, II, and Il in Eq29), for R, =40 and P#1.
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(/E> 3 —_0.1F
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FIG. 13. The terms IV and V in Eq(29), for R,=40 and FIG. 15. Comparison between the valuesXat0 of terms II
Pr=1. (continuous lingand llI—=1—-1V -V (@), for R,=40 and P1.
lar agreement is obtained B&—BO(Hg. 16), except for the . —Z(A0)2 E_J' qs(r,A0)(A6)2P(r,A6)dA 6,
magnitude order of the different terms, which is approxi- Jz 2) =

mately doubled for a doubled Pe numli¢@r4 in Fig. 16 to be
compared with 0.2 in Fig. 25Therefore, the evolution equa- using the conditional expectations, and the probability den-
tion (29) is well balanced, and can be used to predict thesity functionP(r,A #) of temperature incrementsé.
evolution of the PDF’s through the scales. For simplicity, we further note that
The modified Yaglom equation results from a multiplica-
tion by X2 of both sides of Eq(29), an integration ovek, a PA6 IN O
multiplication byr, an integration(primitive calculug with m(r)=ko| — A0 _<Uz€ A9>
respect tor, and finally dividing the result by. More spe- 9z
cifically, we compute the averages over the pldheas fol-

lows: and
92A 0 Y _ %Mz
k0< &ZZ A0> _<U2¥A0> n(r)_ < 0z (Aa) >
too We further obtain
=J' [KoQa(r,A0)—qs(r,A0)JAOP(r,A6)dA 0
- ] 2 (1 o ~
—<Au(A6)2)+2k0(9—r((A¢9)2)+ Ff m(r)r dr
0
and
2(0 oo o
+—J'On(r)rdr=2Npr, (30

0.15 T r

wherer is a dummy variable, playing the role of the separa-
tion r, and Ny=ko((V8)?+(V,6)?) is the passive scalar
“planar” dissipation for temperature.

Using the conditional expectations presented in Sec. IV,
we verify Eq.(30) for different cases, after having written
the equation in its dimensionless form, under the folm
+B+D+E=C, and keeping the same signification as in
Eq. (4), for each of the terms. Here we present caRgs
=40 and P+1, but similar results are obtained for all the

OBk s other cases, i.e.R,=40, P=0.5; R,=70, Pr=1; or R,
; =80, Pr=1. Everywhere the agreement is very good and
0.2 0 . uniform throughout the scales.

The new termD +E adds a positive contribution to the
termA+ B, which results in a very good compensation of the

FIG. 14. Comparison between terms (Hontinuous ling and  termC that could not be obtained by the 3D isotropy theory.
Il —1—IV -V, for the scales 15 (<) and 35 (O), for R,=40  This source term has the tendency to equilibrate the &rm
and Pr=1. at a certain large scale, where effectively the advective term
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FIG. 16. Comparison between the valuesXat0 of terms Il FIG. 17. Generalized Yaglom's equation verification, Ry
(continuous ling and Ili—1—IV —V (@), for R, =80 and Pe1. =40 and P«=1. The termA+ B (M) is the same as for the classical

Yaglom equation. The new terms de(A) andD+E (*). A+B

. o +D+E (@) is to be compared witlC (continuous ling
will be zero. The ternt is simply the result of our hypoth-

esis and of the calculation in the horizontal plane, but the[00 abrupt in comparison with the real PDF’s. The same
most important term from the physical point of view is the behavior was obtained for other data; see Fig 1i of B
termD, which is the expression of the mean gradient through ’ ' i

the scales. As expected, its role decreases as one reacf?er Fig. 7 of Ref.[33].
) b ’ e may conclude that Eq3) presents a “predictability

smaller scales, but it is very important at large scales. Th%omain” of [3.57— 177], since the PDF at 17 is able to

2D isotropy and homogeneity assumptions thus apply per: S C , )
fectly to all scales for the investigated DNS of passive scalalread to a realistic PDF at 35 via this equation using 3D

mixing in a somewhat idealized configuration. Isotropy. Sta@rtmg from a scale larger thanyl & nonrealistic
PDF is obtained, at any smaller scale.

Moreover, it could be noticed that the predictability do-
B. Prediction of the PDF evolution main of the PDF equation using 3D isotropy could be corre-

. ) lated with the aspect & =0 of the conditional expectation
In order to better emphasize the necessity of our approacﬁll’ which is directly related to the dynamic field. Figure 19

which uses planar isotropy, we are now interested in invesysirates theg,(r,X=0) evolution, for two cases: Pe82
tigating to what extent Eq$29) and(3) predict the intermit- 5.4 40. Note here that the computational size isz16r

tent behavior of the PDF’s. In other words, what is the linkpe—40 ang 256 for Pe=82. Vertical arrows point to the
between intermittency and the assumption of 3D iSOropy Ofyrgest scale of the predictability domain of equation 3435

planar isotropy? Such a study was aIrea_dy performed i'?or Pe=82 (see Ref.[33]), and 1% for Pe=40 (present
Refs.[32,33 for the equation supposing 3D isotropy and for 1 - Equation(3) seems to describe the evolution through
relatively large Reynolds numbers. It was shown that, for

small scales, this equation predicts the PDF evolution very
well. We will now investigate this problem fdR, =40, and
Pr=1. At small Reynolds numbers, small and large scales do
not decouple. Testing our approach at a small Reynolds
number is therefore a stringent test. We perform the numeri-
cal integration of Egs(3) and (29), starting from an initial
condition(the PDF and its derivative at a large scaleThe
integration method is the same as in R&3], i.e., an im-
plicit scheme with a negative scale stefy:=—0.001. The
conditional expectations at each scale are simply injected.
The numerical integration is first performed for E8), start-

ing from 175, where this equation is relatively well verified
(see Fig. 9 of the present papefThe PDF at 1% is not
Gaussian, and it contains in a way some information about ; i
the large scales of the mixing. Figure 18 shows the numerical 1972 i s LI
solution of Eq.(3) for the scales 7 and 3.5;, the smallest -5 0 5
scale of the domain. These numerical solutions are compared
with the real PDF’s(dotted lineg. Relatively good agree- FIG. 18. Numerical solution of Eq3) (R, =40, Pr=1), for the
ment is obtained for small scales, especiallyXat0. Note  scales % (O) and 3.5; (®). The initial condition is the PDF at
also the “specific” shape of the E¢3) numerical solution: 175 (<) which is not a Gaussian. No symmetrization has been
for relatively largeX, this solution presents tails which are done.

Numerical solution of Eq. (3)
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=0

q, values at X
Numerical solution of Eq. (29)

r/'n X
FIG. 19. q,(r,X=0) evolution for different Pelet numbers: FIG. 20. Numerical solution of Eq29) (R, = 40, Pr=1), for the
Pe=82 (¢) and Pe=40 (). scales 1% (0), 77 (O), and 3.5 (®). The initial condition is

the largest scale PDFX) which is quasi-Gaussian. Dotted lines
represent real PDF’s for the same scales. No symmetrization has
scales of the PDF rather well, for the scales whpggXx  Peen done.
=0) decays withr. These scales could be associated with a
dissipative zone. However, more needs to be understood
concerning the link between the behavior of the PDF equafor the scales situated in the inertial and dissipative ranges.
tion and the conditional expectations, especiglly In order to understand, qualitatively and quantitatively, the
As far as Eq(29) is concerned, we showed that it is well eyolution of the PDF shapes through the scales, we first in-
balanced for different Pe numbers and for all ScaleS, Where%stigate a previous'y obtained equation for the PDF evolu_
Eq. (3) (using 3D isotropy is not. This result proves that tion, The different terms of this equation, using 3D isotropy
once 2D homogeneity and isotropy are correctly taken intgys 3 major hypothesis, are correctly balanced, for a range of
account, a realistic PDF description can be deduced. This is;gies which includes the dissipative zone and only a small

a very useful result, since the equation using planar iSotropy + of the inertial zone. The equation validation domain de-
could be further considered as a tool to study intermittenc ends on the Ritet number of the mixing.

in anisotropic and inhomogeneous turbulent mixing. In order to link the small scale to the large injection scales

In Fig. 20, we show the numerical solution of H@9), correctly, in a mixing created by a mean temperature gradi-
for the scales 1%, 77, and 3.5, which are to be compared Y 9 y b g

with the real PDF's(dotted lines. Very good agreement is ent and.a homogeneous, isotropic dy”a”?ic field, we rglaxed
obtained for all the scales. Similar results are obtained fthe 3D isotropy to a 2D Qone, by separating the direction of
other Re numbers. The importance of this result consists ithe anisotropy, parallel t&, from the plane perpendicular to
the fact that, starting from a large-scale PDir this case a G, where 2D isotropy is supposed to hold. An equation is
quasi-Gaussian PDFwe can predict with good accuracy the obtained, from which it is possible to obtain a generalized
PDF’s until the very small scales of the domain. form of Yaglom’s equation. Additional conditional expecta-
~The PDF at 3.5 in Fig. 18 is to be critically compared tjons are thus involved; all these quantities are related to the
with the corresponding PDF (34 in Fig. 20, and both of  particular geometry of the mixing and play an important role
them with the real PDF. The value at the level of #@f the i the general balance of the equation. The DNS data ana-
real PDF at 3.5 is much better reproduced by the approachyyzeq herein show that the level of agreement and the range
using planar isotropy, than by E¢3). The approach using ot scales where our prediction is valid are significantly en-
2D isotropy[Eq. (29)] leads to a numerically computed PDF - 4 \when this equation is considered.
closer to the real PDF. AISO.’ the predictability doma‘” COVers Therefore, the main result of the present paper is that a
3” the SC?'ES °3f 'ghel_ dpm;lln.hFor Pe(é’ tgg zredlctab(ljlll_ty correct prediction of the statistics of the passive scalar incre-
omain ot q'( ) is !m|te , whereas Eq(29) does predict ments at inertial and dissipative scales, smaller than the in-
all the statistics starting from a Ia_lrge-scale PG\F.?’S”)' In jection scale, is possible provided the large injection scales
particular, the intermittent behavior of the PDF is more cor-_ properly taken into account, as it is done by the supple-
rectly reproduced, through the equation obtained using 2 entary terms we calculated. '
homogeneity and isotropy, and by taking into account some
terms which are the direct expression of the mean tempera-

ture gradient influence.
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APPENDIX

We compute here the second term of Ebj):
9%g I ca L\
2 (B0, NIVAO(X, T, D7) (r,2)

o1 9g I - -
= lim Wf(xzwz)@zmm0(x,r,t),r)[V;0(x+r,t)—V;ﬁ(x,t)]de dy
R—x

. 1 g - s - s
= lim W{ f(x2+yz)<R2W(A0(X,I’,t),l’)[Vx0(X+r.t)] dx dy

7g . -
] s AU DIT0GR0 P dy
X2ty

& I - .
—2[( ) 2)<R2a—X%(A9(x,r,t),r)V;0(x+r,t)-V;e(x,t)dx dyt, (A1)
xe+y

where
. 1 (?Zg L. R L ,
fim 7TR2J'( 2, 2)<R2W(A0(X,I‘,t),r)[V);0(x+r,t)] dx dy
R—x X y

. l (929 > g >, > 2
_Flzinw Wf(xzwzmzm(—w(x,—r,t),r)[Vxﬁ(x,t)] dxdy (A2)

and

o1 9’9 IO I R
lim Wf(xzwz)@zmma(x,r,t),r)Vxe(x+r,t).an(x,t)dx dy

R

1 9%g I - R
FLR szf(xuyzKRzaxz (AB(X,T,1),1),0(X+T,1)d,0(X,t)dx dy

. 1 a9 . -
+|iinm _RZ{VrJ(xzwszZ&_X(A G(X,r,t),r)V(x]y) 6(x,t)dx dy

dv:g oL R
_j(x2+y2)<R2 X (A6(X,r,1),r)V ) 0(x, 1)dx dy|, A3)

whereV , ,,=(dy,d,) stands for the gradient operator in the)() plane. In the last integral we use the identity

2

g - | 9 I I avig
A W(Aa(x,r,t),r) =W(Aa(x,r,t),r)V(X,y)a(x+r,t)+

X (AO(x,r,t),r). (A4)

The right-hand side of EA3) can then be written in the following way:
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1 9°g

lim —> 7

R TR J(x2+y2)<R2(?X

+ i !
M TR?

R—

99
A% vl
(x2+y?)<R20X

* J(xz+yz)<R2V(x,y)[VFQ(A o(x,r,t),r)]dx dy

2
= lim —f

R TR (2 4y2)<R2
a9

i
lim X

R—o0

1 V‘J
TR " 2 y?)<r2

+ lim

R— o0

mR? f(x2+y2)<R2

V;f V:g(AB(X,r,t),r)dx dy+f
(x®+y?)<R2

(x%+y?)<R?

(AO(X,T,1),1)V (x.y) O(X,1) — Vig(A O(X,T,1),T)

PRE 60

(AB(X,T,1),1)d,0(X+1,1)3,0(x,t)dx dy

(AO(X,T, 1),V (5., (X, 1)dx dy

VZ2g(AO(X,F,t)F)dx dy]

J I - - N
{9—X%(A0(x,r,t),r)020(x+r,t)aza(x,t)dxdy

dx dy

2 - - -,
VZg(Aa(x,r,t),rydx dy.

The term(V ,.,,(V;g(A 6(x,r,t),r))) is obviously equal to zero. As a result if we combine E@sl)—(A3) and the second

term on the right-hand side of E¢L0):

7%g R R R 2
<W(A O(x,r,t),N[V;A a(x,F,t)]2> (r,z)—<

iy 1 f 9%g
R TR 22y <l | X2
—2V23g(AO(X,T,t),r)|dx dy—2 lim—= V-
r (RS ] R_)w’]TRz r

99
axX

<)
(X2 +y?)<R?

(AO(X,T,1),1)V (5. O(X, 1) dx dy— V(A B(X,F,1),r)

2 - N
W(Ae(x,r,t),r)[azA9(x,r,t)]2>(r,z)

2

5 s s d I N
(—Ae(x,—r,t),r)+a—X%(Ae(x,r,t),r))[V(X,y)ﬁ(x,t)]2

dx dy. (A5)
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