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Planar isotropy of passive scalar turbulent mixing with a mean perpendicular gradient
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A recently proposed evolution equation@Vaienti et al., Physica D85, 405~1994!# for the probability density
functions ~PDF’s! of turbulent passive scalar increments obtained under the assumptions of fully three-
dimensional homogeneity and isotropy is submitted to validation using direct numerical simulation~DNS!
results of the mixing of a passive scalar with a nonzero mean gradient by a homogeneous and isotropic
turbulent velocity field. It is shown that this approach leads to a quantitatively correct balance between the
different terms of the equation, in a plane perpendicular to the mean gradient, at small scales and at large Pe´clet
number. A weaker assumption of homogeneity and isotropy restricted to the plane normal to the mean gradient
is then considered to derive an equation describing the evolution of the PDF’s as a function of the spatial scale
and the scalar increments. A very good agreement between the theory and the DNS data is obtained at all
scales. As a particular case of the theory, we derive a generalized form for the well-known Yaglom equation
~the isotropic relation between the second-order moments for temperature increments and the third-order
velocity-temperature mixed moments!. This approach allows us to determine quantitatively how the integral
scale properties influence the properties of mixing throughout the whole range of scales. In the simple con-
figuration considered here, the PDF’s of the scalar increments perpendicular to the mean gradient can be
theoretically described once the sources of inhomogeneity and anisotropy at large scales are correctly taken
into account.@S1063-651X~99!02108-X#

PACS number~s!: 47.27.Gs, 47.27.Ak, 47.27.Eq
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I. INTRODUCTION

Understanding the statistical and dynamical properties
high Reynolds number turbulent flows is currently the su
ject of many investigations. Kolmogorov theory~@1#, hereaf-
ter referred to as K41!, has provided some major insight i
this field. It assumes local isotropy in high Reynolds num
turbulent flows. The K41 theory successfully predicts t
structure of the two-point correlation function of the veloc
field in the inertial range, intermediate between the la
anisotropic scales, where energy injection takes place,
the small scales, where viscosity is important. Local isotro
for the inertial range signifies simply that all the statistic
properties of the field are invariant under any rotation dir
tion. In particular, this property implies the independence
these scales with respect to the large scale forcing, in gen
anisotropic and very specific~nonuniversal!. The K41 theory
leads to a scaling law for the velocity increments,Sp

5^„u(r )2u(0)…p&'ēp/3r p/3, when the separationr is in the
inertial range, and whereē is the mean dissipation rate. Ac
cordingly, these moments should generally determine s
similar probability density functions~PDF’s!.

The K41 theory, originally derived for the velocity fiel
was later naturally extended to the passive scalar field
Oboukhov@2# and Corrsin@3#. Indeed, it was reasonable t
argue that the passive scalar properties would be comple
determined by the driving field behavior.

Significant deviations of the high order velocity momen
from the K41 predictions were found experimentally@4#. Un-
derstanding these deviations, attributed to the phenome
called ‘‘intermittency,’’ and predicting the correspondin
PRE 601063-651X/99/60~2!/1691~17!/$15.00
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anomalous scaling laws, has become a major challenge.
eral ‘‘phenomenological models,’’ from the Kolmogoro
model ~K41! to the refined similarity hypothesis~RSH! @5#,
or the multifractal model@6#, tried, with more or less suc
cess, to refine the predictions qualitatively and quantitativ
for the velocity scaling law exponents~see Ref.@7# for a
recent review!. Recently, a general analysis of the turbule
cascade was proposed in Ref.@8#. A canonical distribution of
velocity differences at any scale was introduced, with
help of a conserved quantity throughout the whole sc
range. Several of the previously mentioned models can
recovered as particular cases in this general formulation
phenomenological description of the statistical properties
the cascade was also presented in Ref.@9#, providing an evo-
lution equation for the probability density function of th
velocity increment. A method to extract the exponents c
responding to the various irreducible representations of
rotation group was proposed in Ref.@10#, therefore address
ing the issue of isotropy in turbulent flows. Alternatively,
@11#, anomalous scaling exponents for the dynamic fi
were obtained, by taking into account the interaction b
tween random and large-scale coherent components of a
bulent field.

Generally speaking, the passive scalar field was found
exhibit a more anomalous behavior than the velocity fi
@12#, being in this sense ‘‘more intermittent than the veloc
field.’’ Specifically, the probability density function
~PDF’s! associated with the inertial and dissipative sca
deviate from self-similar behavior, and present wider th
exponential tails more pronounced than those for the velo
field.
1691 © 1999 The American Physical Society



si
fo

ca
to
w
a
or

ou
th
t

g
tu

b
n,
a

f
o

f-

iv

to
w
t
e

si
e
e

ue
to

n
r

ai
m
th

r o
ob
i

nt

m

t

e

th
u

as

d in
ri-

the

ra-
py,

cell
s in
ma-
ory

ge
an
von
-

ver,
nal
stics
as a
s
ef.

-
ith

to
ost

ent

le
in-
,’’

n-
n a
sys-

the
s or

a
ic.

c-
rge
o-
to

ale
rid
sta-
en

1692 PRE 60L. DANAILA et al.
Several models have been proposed to explain pas
scalar intermittency. Essentially, the models developed
the dynamic field were also ‘‘translated’’ for the passive s
lar field. This implicitly supposes that the scalar field au
matically inherits some properties from the advecting flo
Thus it is traditional to think that the passive scalar ‘‘intern
intermittency’’ is due to the dissipation rate fluctuations f
both kinetic energy and scalar variance@13,14#. Most theo-
retical models of internal intermittency are based on vari
assumptions for the dissipation rate variation through
scales. For instance, the RSH theory was adapted for
temperature field@15#. Alternatively, a lot of attention has
been paid to analyzing, theoretically and phenomenolo
cally, the anomalous scaling exponents of the tempera
structure functionsS2n(r )5^(Du)2n& @16,17#, with reason-
able success.

A different approach to the problem was proposed
Kraichnan@18–20#, who considered mixing by a Gaussia
white in time velocity field. The problem then reduces to
closed~Hopf! equation for theN-point correlation functions
of the scalar @20,21#. A mathematical understanding o
‘‘anomalous exponents’’ has emerged from the study
these equations@22–24#. Anomalous scaling laws were e
fectively found for moments of orderN>4, and even for the
third moment in the presence of a mean gradient@22,25#.
Remarkably, a simple Gaussian velocity field~no intermit-
tency! can induce an intermittent behavior of the pass
scalar.

An alternative way to study intermittency effects is
investigate the PDF evolution through the scales. It is kno
that large–scale PDF’s are in general Gaussian, when
boundaries direct influence is negligible. However, larg
scale temperature increment PDF’s are not always Gaus
For instance, in Ref.@26# these PDF’s were found to b
sub-Gaussian~with a kurtosis equal to 2.3, smaller than th
‘‘Gaussian’’ value of 3!, whereas, in Ref.@27#, the large-
scale PDF’s were super-Gaussian. These results are d
different values of the ratio of the turbulent integral scale
the tunnel width~for the physics of this anomalous diffusio
process, see Ref.@21#!. The mixing we analyze in this pape
presents a Gaussian large-scale temperature PDF.

The question is then to understand how exponential t
appear for the smaller scales, starting, for instance, fro
Gaussian distribution at large scales. A new approach in
direction was developed in Ref.@28#. The basic objective is
to develop a theory able to predict small-scale behavio
PDF’s starting from their large-scale counterparts. The pr
lem can be formulated as a partial differential equation
two variables—separation and passive scalar increme
involving two conditional expectations~of the velocity incre-
ment, and of the squared passive scalar gradient!. These con-
ditional expectations have either to be provided fro
experiments or direct numerical simulation~DNS!, or to be
modeled@29#. The basic weakness of this theory appeared
be the assumption of local three-dimensional~3D! isotropy
for the passive scalar explicitly used in the derivation of R
@28#. The well-known Yaglom equation@30,31#, relating the
second-order moments to the third-order moments, of
temperature increments results from the PDF evolution eq
tion.

The issue of validity of the 3D isotropy assumption h
ve
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been addressed for different Reynolds numbers Re, an
different flow geometries. The flows used both in expe
ments~a slightly heated turbulent boundary layer and at
center of a von Ka´rmán swirling flow, with an imposed tem-
perature difference between the two disks! and in DNS~a
homogeneous isotropic velocity field with a mean scalar g
dient! show a significant degree of large-scale anisotro
which may contaminate the small scales, whereas Ref.@28#
assumes isotropy.

In the case of the von Ka´rmán swirling flow, however, the
temperature increment skewness in the center of the
could be nearly zero, contrary to what generally happen
shear flows. This suggests that isotropy is a good approxi
tion in this case, and it was indeed found that the the
developed in Ref.@28# is valid in a high Reynolds flow
(Rl'600), over a significant subdomain of the inertial ran
@32#. In the case of the boundary layer, of the mixing by
homogeneous flow with a mean scalar gradient, or of the
Kármán swirling flow, only the PDF’s in the plane perpen
dicular to this mean scalar gradient were analyzed. Howe
in the case of the boundary layer, PDF’s and conditio
averages are not symmetric, as they should be if the stati
were isotropic. They had in this case to be symmetrized,
palliative for the 3D isotropy. With this procedure, it wa
found that the range of scales over which the theory of R
@28# applies~the ‘‘validation domain’’!, includes the dissipa-
tive and small inertial scales@33#, until limits which were
found to be 50h @h[(n3/ ē)1/4, is the Kolmogorov length
scale# for a slightly heated boundary layer, withRl

5lu8/n'200, or 30h in the DNS with a homogeneous iso
tropic velocity field and a mean temperature gradient, w
Rl582 ~whereu8 is the velocity rms, andl is the Taylor
microscale!. Although the results of Ref.@33# are very en-
couraging, important questions regarding isotropy remain
be addressed. This question is particularly important, as m
flows do exhibit a significant anisotropy.

Isotropy issues have been extensively studied in differ
flow configurations@34–39#. A quantitative characterization
of isotropy turns out to depend on the test that is used@40#.
In order to link inertial range anisotropy to the large-sca
properties qualitatively and quantitatively, we need to dist
guish first between different ‘‘energy injection processes
which are specific to the large scales of each flow.

Specifically, one has to distinguish between no
homogeneous scalar injection, as happens, e.g., whe
large-scale temperature difference is applied across the
tem, resulting in a large-scale gradient, stationary@38# or
decaying in time, and homogeneous scalar injection, as is
case for grid turbulence heated with a mandoline, the jet
the wakes on their axis. The former is known to lead to
large anisotropy, whereas the latter is essentially isotrop

In fact, the equation developed in Ref.@28# was investi-
gated for different mixings with the same injection chara
teristics: a mean temperature gradient applied on the la
scales. It is not very surprising that a large-scale nonhom
geneity and anisotropy could influence the statistics up
relatively small scales. On the other hand, in a large-sc
homogeneous and quasi-isotropic mixing, like a heated g
turbulence, one has to take properly into account the non
tionarity of the flow, in order to close the relation betwe
different moments of temperature increment@41#. Our gen-
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eral aim is, for finite Reynolds numbers~consequently when
strict local isotropy generally does not hold!, to understand
how the large scales and the energy injection manner in
ence the inertial range evolution of different statistical qu
tities. In this paper, we investigate some of the mixings p
sented before, especially their isotropic properties,
analyze further the theory developed in Ref.@28#, or its sim-
pler form: Yaglom’s equation. We consider mainly the pro
lem of mixing by an homogeneous isotropic flow, with
nonhomogeneous scalar injection. This case is more com
than grid turbulence, but less complex than shear flows w
a mean temperature gradient. DNS is a convenient wa
produce such a flow configuration and to measure all
quantities@37# necessary to test our predictions. We stu
the statistical properties in a fixed planeP perpendicular to
GW , the scalar gradient, whereGW is parallel to the spatia
direction z. In this planeP (z5const), the isotropy of the
scalar field has been shown numerically to be satisfied
comparing the properties of the various moments of the t
perature derivatives in the directions perpendicular to
gradient. This is in sharp contrast with the derivative para
to the large-scale gradient@37#.

To investigate how anisotropy is associated with the in
gral scales, we relax the 3D isotropy assumption and sim
assume that the scalar is isotropic in the planeP normal to
the mean temperature gradient. In Sec. II, we first pres
some results concerning the theory based on the 3D isot
assumption in order to provide data for comparison with
sults obtained using the 2D isotropy theory. We emphas
that for relatively small Pe5Re3Pr (Pr5n/k0), the equa-
tion works well only for very small scales. In Sec. III, w
present the hypotheses and the theoretical considerations
permit the derivation of a new evolution equation for t
PDF’s of passive scalar increments, which takes into acco
the mean temperature gradient. The closure needs five
ditional averages. Some of them explicitly contain the lar
scale anisotropy. In Sec. IV, we discuss the five conditio
expectations obtained numerically. Finally, in Sec. V,
deduce a new Yaglom equation as a particular case of
PDF equation based on the 2D isotropy. The validity of t
Yaglom equation is verified for various Pe numbers of
mixing and the balance between the terms is investigated
shown in Sec. V, once the isotropy assumptions are ada
to a real situation, the PDF equation becomes a reliable
for extrapolating small-scale PDF’s from those obtained
large scales, and the original objective of Ref.@28# can be
achieved.

II. PDF’S IN THE CONTEXT OF A THREE-DIMENSIONAL
ISOTROPY

In this section, we present the numerical verification
the ‘‘evolution’’ equation for the PDF’s of passive scal
increments derived in Ref.@28#. We demonstrate that thi
equation provides an accurate description of the PDF of
lar increments in a planeP perpendicular to the mean gra
dient, and that the quantitative agreement becomes b
when the scale becomes smaller and the Reynolds num
becomes larger.

In the following, without loss of generality, we use a te
minology referring tou as the temperature. In this way, th
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ratio of the molecular diffusivityk0 to the kinematic viscos-
ity n will be referred to as the Prandtl number Pr.

We now briefly present the strategy used to derive
PDF equation. The method is similar to that employed
Ref. @42# to obtain the PDF of the temperature itself. We w
adopt the same procedure in this work~Sec. III!, in order to
obtain the PDF evolution equation through the scales w
isotropy holds only in planes perpendicular to the mean g
dient. The starting point is naturally the heat-transfer eq
tion:

]u

]t
~xW ,t !1uW ¹u~xW ,t !5k0¹2u~xW ,t !,

written in a point xW at time t. We are then interested in
temperature incrementsX5Du(xW ,rW,t). The main steps of the
mathematical development are the following.

~i! We consider a general test, scalar functiong(X,rW). In
particular, this function could be thenth-order (n even! tem-
perature increment, (Du)n.

~ii ! An operatorD [g] is defined, which applies the opera
tors involved in the heat-transfer equation to the functiong:

D [g]~xW ,rW,t ![
]g„Du~xW ,rW,t !,rW…

]t
1uW ~xW ,t !•¹g„Du~xW ,rW,t !,rW…

2k0¹2g„Du~xW ,rW,t !,rW….

~iii ! When developed, the right-hand side can be sim
fied using the heat-transfer equation yielding a new equat
The statistical averages of both sides of the obtained eq
tion are calculated using the following hypotheses:~i! sta-
tionarity of all statistical averages and~ii ! three-dimensional
homogeneity and isotropy. The latter can be expressed m
ematically by the specific form of the operators gradient a
Laplacian applied on the isotropic increment vectorrW:

¹ rW [
1

r 2

]

]r
r 2,

wherer 5urWu. These hypotheses and the corresponding a
braic manipulations are very similar in spirit to the one us
in Ref. @31#. The final form of these developments is th
functional equation̂F(g)&50, whereF is the functional of
g,

E gE„P~r ,X!…dX50, ;g, ~1!

equivalent, in the distributive sense, to the equation

E„P~r ,X!…50,

considered as the partial differential equation for the pr
ability density functionP, depending on the modulusr of the
spatial displacement and the stochastic variableX represent-
ing the temperature incrementDu. Let us note that the sam
approach was used in Ref.@42#. The resulting equation then
reads, explicitly,
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F2

r
1

]

]r G@P~r ,X!q1~r ,X!#12k0

]2

]X2
@P~r ,X!q2~r ,X!#

52k0F2

r
1

]

]r G ]P

]r
~r ,X!, ~2!

where P(r ,X), q1(r ,X), and q2(r ,X) are the PDF of tem-
perature increment, the conditional expectation of the ve
ity increment, and the squared temperature gradient co
tioned by the temperature increment, respectively. It
convenient to use a dimensionless version of Eq.~2!, by using
the rescaled variables:r̃ 5r /lu , ũ5u/u8, and X̃5X/u8
wherelu[u8/^(]u/]x)2&1/2 is the temperature Taylor sca
~also called Oboukhov-Corrsin microscale!; u8 is the tem-
perature rms. Thereafter we drop the tilde:

Pe

2 F2

r
1

]

]r G@P~r ,X!q1~r ,X!#1
]2

]X2
@P~r ,X!q2~r ,X!#

5F2

r
1

]

]r G ]P

]r
~r ,X!. ~3!

Equation~3! is then written symbolically as I1II5III, the
three terms I, II, and III referring to the three terms as th
appear in Eq.~3!.

The well-known Yaglom equation can be simply obtain
from 1 by choosingg5(Du)2, and by integrating once with
respect tor. Yaglom’s equation@30# simply reads

2^~Du!~Du!2&12k0

d

dr
^~Du!2&5

4

3
N̄r , ~4!

whereN̄5k0^(¹u)2&. Equation~4! is written for simplicity
asA1B5C.

The three terms I, II, and III have the same origin in t
heat equation, and the same physical interpretation as
three termsA, C, andB ~in this order!. Yaglom’s equation
represents an energy balance. Terms I andA come from the
advection term in the heat transport equation; they repre
the energy transfer through the scales by the turbulent
cess.

Term II comes from a part of the molecular diffusion, a
it represents a large-scale diffusion. TermC, its counterpart,
is the mean energy transfer rate between the scales. Fin
terms III and B both are the expression of the molecu
diffusion, and they are present at small scales only.

Since the equation has been derived using the assu
tions of homogeneity and three-dimensional isotropy,
PDF P(r ,X) and the conditional expectation of the squar
temperature gradientq2(r ,X)5^(¹u)2/Du& depend onr

5urWu only. In addition, since the conditional expectation
the velocity increment is isotropic,̂DuW /Du&5q1(r ,X)rW/r ,
andq1(r ,X) is thus easily amenable to measurements as
the conditional expectation of the longitudinal velocity incr
ment. The closure problem then consists in determining
two scalar functionsq1(r ,X) andq2(r ,X).

The conditional expectationsq1(r ,X) and q2(r ,X) were
previously determined in two cases: from our measurem
in a boundary layer over a heated wall@29#, and from DNS
of a passive scalar with a mean gradient mixed by a ho
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geneous and isotropic turbulent velocity field@37,33#. Isot-
ropy implies that all the quantities involved in Eq.~3! are
even functions ofX: P(r ,X)5P(r ,2X), q1(r ,X)5q1(r ,
2X), andq2(r ,X)5q2(r ,2X). If the mixing is not isotro-
pic, these constraints do not hold.

The experimental conditional expectations were theref
symmetrized to provide closure functions consistent with
isotropic theory@33#. Still, the parity of the functions doe
not guarantee isotropy, so the results we obtain for the an
sis of this equation remain, in spite of this symmetrizatio
very sensitive to the isotropy of the experimental or DN
data.

To provide a basis for comparison with our followin
proposed 2D isotropy theory, we now present results of
3D equation, showing to what extent Eq.~3! is verified for
Reynolds numbersRl540 and 70 and Prandtl numbers P
50.5 or Pr51 keeping a fixed mean temperature gradie
G51. All the quantities are made dimensionless with resp
to the computational domain size. In order to determine
velocity and temperature fields numerically, the Navie
Stokes and heat-transport equations are solved using a
dard pseudospectral code. The boundary conditions for
locity and temperature are periodic in the three directio
The computational domain is periodic with a length 2p, con-
taining 1283 points. A good statistical convergence could
achieved by averaging for about six eddy-turnover times
our calculations, we have checked that the moments of
scalar derivatives in directions perpendicular to the grad
do not depend, up to statistical errors, on the precise di
tion in the plane parallel. More details about the numeri
method used in this work can be found in Ref.@37#. Let us
consider a first case with the following parameters:

~i! Rl540, Pr51, G51. The characteristics of the mix
ing are k05n50.012, the rms of temperature fluctuatio
u851.79, the Oboukhov-Corrsin microscalelu50.235, and
the Kolmogorov scale of the turbulent dynamic fie
h50.057. The nondimensionalized~not symmetrized!
conditional expectations q̃15Pelu

/2^Du/Du& and q̃2

5lu
2^(¹u)2/Du&, obtained from DNS data, are presented

Fig. 1. For simplicity, we will further noteq̃1 and q̃2 asq1
andq2. All the conditional expectations, terms in Eq.~3! or
~4! analyzed thereafter are dimensionless.

The PDF’s obtained from DNS data in the plane perp
dicular to the mean gradient are presented in Fig. 2. T
figure reflects well the evolution from a large-scale Gauss
to a small-scale PDF with typical exponential tails.

Using these PDF’s and conditional expectations,
verify Eq. ~3!, by simply computing the three terms. A
stated in Ref.@33# ~see Fig. 2 of Ref.@33#! the residual of the
equation is maximal atX50 , so we present the equatio
verification atX50 only. Although a nondimensionalizatio
using the Oboukhov-Corrsin microscalelu appears to be
more convenient for the numerical treatment of the equa
@33#, the results are represented in terms ofr /h. Figure 3
shows that the equation is verified only forr<7h indicating
the lack of isotropy at larger scales. The reason for this is
large discrepancy between the ‘‘turbulent transport’’ term
that tends rapidly to zero at large scales, and the ‘‘diffusio
term II that remains almost constant for large scales. Th
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features are not surprising since they are obviously ass
ated with the widely documented behavior of Yaglom
equation @43#. As Fig. 10 will illustrate it, the termC

5 4
3 N̄r which is associated with the term II of Eq.~3!, re-

mains unbalanced at large scales, when the turbulent tr
port term A52^Du(Du)2& becomes small. Note that thi
term A was modeled in Ref.@20# in terms of an eddy diffu-
sivity characteristic of the dispersive properties of the velo
ity field alone,à la Richardson.

All the above quantities have been computed in the pla
normal to the mean gradient. In experiments, e.g., in a he
boundary layer, this should correspond to data obtained
treating the cold wire measurements using Taylor’s hypo
esis. Using the same DNS data we can also check what
pens in the direction parallel to the mean gradient. It appe
that, in this case, Eq.~3! does not hold even for the smalle
scales. Anisotropy affects even the dissipative scales in
direction, as already emphasized in Ref.@37#. In Fig. 4 we

FIG. 1. Conditional expectationsq1 ~left! andq2 ~right!, for the
scales 3.5h, 7h, 17h, and 34h, at Rl540 and Pr51.

FIG. 2. PDF’s in the plane perpendicular to the mean gradi
for the scales 3.5h, 7h, 17h, and 34h, using a linear scale~left!
and a logarithmic scale~right!, at Rl540 and Pr51.
ci-
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present the computed conditional expectations, and in Fi
the PDF’s obtained by treating the DNS data in the direct
parallel to the mean gradientGW .

One can notice the strong asymmetry of the represen
quantities indicative of the strong anisotropy in this dire
tion. The trend of the two conditional expectations and
PDF’s to become symmetric at the smallest scale (3.5h) is,
nevertheless, clear. This behavior demonstrates the an
tropy in the mean temperature gradient direction, and m
vates the investigation of the mixing when isotropy holds
planes only.

The effect of the Prandtl number has been investigated
comparing the first case above~Figs. 1–3! to that with Pr
50.5. The conditional expectationsq1 andq2 are presented
in Fig. 6, and the PDF’s in Fig. 7.

Though the conditional expectationsq1 andq2 are more
symmetric for a smaller Prandtl number, Eq.~3! is even less
verified in this case. This is associated with the fact that
Péclet number Pe is smaller, so that the imbalance of Eq.~3!
for large scales is stronger~see Fig. 8!.

t

FIG. 3. X50 evolution for the three terms in Eq.~3!, at Rl

540 and Pr51. The term II~s! is to be compared to III2I ~d!.

FIG. 4. Conditional expectationsq1 andq2 for the scales 3.5h,
7h, 17h, and 34h, in the direction parallel to the mean gradient,
Rl540 and Pr51.
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1696 PRE 60L. DANAILA et al.
In contrast, a higher Reynolds number modifies the vel
ity field by extending the inertial zone so that isotropy th
appears to be verified for larger scales in terms of the K
mogorov length scale. Another way to write Eq.~3! is
~III 2I!/II51. Thus, comparing the term~III 2I!/II with the
value 1 is a compact way to emphasize the validation
main for the equation as a function of the Pe´clet number of
the mixing. Figure 9 represents such a result, forX50: the
larger the Pe´clet number is, the better the equation is ve
fied. We note that, for Pe582, the approach becomes bett
for the scales smaller that 30h, with an error of about 20%

In this sense, the direct influence of the large scale an
tropy diminishes as one reaches smaller and smaller sc
Equivalently, the range of scales where the equation is v
increases when the Pe´clet number increases.

As already mentioned, Yaglom’s equation~4! is obtained
as a particular case of the approach; moreover, it is easi
verify the second-order relation between the moments. Eq
tion ~4!, rendered dimensionless using the same quantitie
for Eq. ~3!, is analyzed through the data reported in Fig. 1

We can note that the disagreement with the full isotro
predictions in terms of Yaglom’s equation is very similar

FIG. 5. PDF’s for the scales 3.5h, 7h, 17h, and 34h, in the
direction parallel to the mean gradient, atRl540 and Pr51.

FIG. 6. Conditional expectationsq1 andq2 for the scales 3.5h,
7h, 17h, and 34h, at Rl540 and Pr50.5.
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that for Eq.~3! taken atX50. ~See Fig. 3.! The conclusion is
that Yaglom’s equation is a good indicator of the validi
domain for Eq.~3!, being obviously less complete, but sim
pler than the equation for the PDF’s. Yaglom’s equati
does not contain any intermittency effect, but it is a use
means to investigate isotropy.

The general conclusion of this section is that, for fin
Reynolds numbers, the equation which assumes 3D isotr
allows us to determine quantitatively the PDF shapes in
plane perpendicular to the mean gradient, but only at sm
scales and large Pe´clet number. Important deviations ar
found at larger scales, in the upper part of the inertial ran
In order to investigate the laws governing the evolutions
the large inertial scales, in Sec. III we develop an appro
which assumes small-scale isotropy only in planes perp
dicular to the mean gradient.

III. CONSEQUENCES OF ISOTROPY RESTRICTED
TO A PLANE

Section II ~see also Ref.@33#! demonstrated that the iso
ropy assumption for the mixing of a passive scalar with

FIG. 7. PDF’s for the scales 3.5h, 7h, 17h, and 34h, at Rl

540 and Pr50.5.

FIG. 8. X50 evolution for the three terms involved in Eq.~3!,
at Rl540 and Pr50.5. The term II~s! is to be compared to III2I
~d!.



s
la
t,
,
t

so
, i
in
pe
hi
he

ra
li

-

me

-

n
the

e-
-

s
r

the
is
ed
cted
y.
to

e of

PRE 60 1697PLANAR ISOTROPY OF PASSIVE SCALAR TURBULENT . . .
mean gradient leads to a good balance between the term
the equation describing the evolution of the PDF’s of sca
increments in a plane perpendicular to the mean gradien
small scales and at large Pe´clet numbers. Our approach
however, does work at all for scalar differences parallel
the mean gradient. This shows the limitations of the 3D i
tropy assumption for the problem studied, and suggests
stead, a weaker isotropy assumption considered only
plane perpendicular to the mean gradient, or, in general,
pendicular to the anisotropy direction. The purpose of t
section is the derivation of the equation of evolution for t
PDF’s, assuming isotropy only in planes perpendicular toGW .

A. Theory

In the following derivation, we propose a more gene
form of the evolution equation of the PDF. It is a genera
zation of the demonstration proposed in Ref.@28# and rapidly
presented in Sec. II. Letg(X,rW) be a scalar function of a
scalar variableX and a vector rW. We assume thatg
PS(R4), S being the space of infinitely differentiable rap
idly decreasing functions.

FIG. 9. X50 evolution for the ratio~III 2I!/II in Eq. ~3!, which
should be compared with the value 1, function of the scalesr /h, for
different Péclet numbers: Pe520 (n), Pe540 (h), Pe570 (L),
and Pe582 (d).

FIG. 10. Yaglom’s equation nonverification, forRl540 and
Pr51. A1B (j) is to be compared withC ~continuous line!.
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The variable X describes the value of incrementsX
5Du(xW ,rW,t)5u(xW1rW,t)2u(xW ,t), whererW is the separation
vector. We define

D@g#~xW ,rW,t ![
]g„Du~xW ,rW,t !,rW…

]t
1uW ~xW ,t !•¹xWg„Du~xW ,rW,t !,rW…

2k0¹xW
2
g„Du~xW ,rW,t !,rW…. ~5!

Using the equation of evolution for a passive scalar,

]u

]t
~xW ,t !1uW ~xW ,t !•¹xWu~xW ,t !2k0¹xW

2
u~xW ,t !50, ~6!

and elementary algebraic manipulations, one finds

D@g#~xW ,rW,t !52
]g

]X
„Du~xW ,rW,t !,rW…DuW ~xW ,rW,t !•¹xWu~xW1rW,t !

2k0

]2g

]X2 „Du~xW ,rW,t !,rW…@¹xWDu~xW ,rW,t !#2, ~7!

whereDuW (xW ,rW,t)5uW (xW1rW,t)2uW (xW ,t).
We consider statistically stationary flows, and we assu

that the flow properties are homogeneous in planesP,z
5cst. This isa priori compatible with a mean velocity pro
file UW 5„Ux(z),Uy(z),Uz(z)…. We found, however, that in
the simplest possible shear flow,UW 5(Sz,0,0), the isotropy
of the scalar inz5cst planes was not a good approximatio
at all, and we restrict ourselves here to the case where
mean velocity profile is uniform, and the flow is homog
neous and isotropic. In the following, we will simply com
pute the statistical averages over the planeP,z5cst:

^w&~z![ lim
R˜`

1

pR2E
(x21y2),R2

w~xW !dx dy. ~8!

Note that the average of a gradient, in the sense of Eq.~8! is
non-zero:^¹ fW&(z)5^]zf z&. The mean values of quantitie
such asD@g# are functions ofz and of the separation vecto
rW.

Specifically, the mean value of expression~5! reads

^D@g#&~rW,z!5]z^uz~xW ,t !g„Du~xW ,rW,t !,rW…&~rW,z!

2k0]z
2^g„Du~xW ,rW,t !,rW…&~rW,z!. ~9!

A large-scale anisotropy, such as that encountered in
proximity of the solid wall in a turbulent boundary layer,
likely to induce a strong anisotropy of all the investigat
structures. A symmetry between increments may be expe
only in a plane perpendicular to the direction of anisotrop
For this reason, we restrict ourselves in the following
separation vectorsrW in the planeP normal tozW: rW•zW50.

Keeping in mind that the averages@Eq. ~8!# are taken only
in the (x,y) plane, and exchanging the order ofz derivatives
and averaging integrals, we can rewrite the right-hand sid
Eq. ~9! in the following form:
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^D@g#&~rW,z!5 K uz~xW ,t !
]g

]X
„Du~xW ,rW,t !,rW…]zDu~xW ,rW,t !L ~rW,z!1^]zuz~xW ,t !g„Du~xW ,rW,t !,rW…&~rW,z!

2k0K ]2g

]X2 „Du~xW ,rW,t !,rW…@]zDu~xW ,rW,t !#2L ~rW,z!2k0K ]g

]X
„Du~xW ,rW,t !,rW…]z

2Du~xW ,rW,t !L ~rW,z!. ~10!

On the other hand, taking the average of Eq.~7!, we obtain

K ]g

]X
„Du~xW ,rW,t !,rW…DuW ~xW ,rW,t !•¹xWu~xW1rW,t !L ~rW,z!1k0K ]2g

]X2 „Du~xW ,rW,t !,rW…@¹xWDu~xW ,rW,t !#2L ~rW,z!1^D@g#&~rW,z!50.

~11!

Combining Eqs.~10! and~11!, we obtain an equation whose terms can be further transformed following a general st
which consists in eliminating, wherever possible, the derivatives of temperature increments with respect tox andy. Specifi-
cally, to transform the first term on the right-hand side of Eq.~11!, we use the obvious equality

]u

]xi
~xW1rW,t !5

]u

]r i
~xW1rW,t !, i 51,2, ~12!

and the continuity equation foruW :

K ]g

]X
„Du~xW ,rW,t !,rW…DuW ~xW ,rW,t !•¹xWu~xW1rW,t !L ~rW,z!

5¹ rW^g„Du~xW ,rW,t !,rW…DuW ~xW ,rW,t !&~rW,z!2^@¹ rWg#„Du~xW ,rW,t !,rW…DuW ~xW ,rW,t !&~rW,z!

1^]zuz~xW1rW,t !g„Du~xW ,rW,t !,rW…&~rW,z!1 K ]g

]X
„Du~xW ,rW,t !,rW…Duz~xW ,rW,t !]zu~xW1rW,t !L ~rW,z!. ~13!

We proceed similarly for the other terms~see the Appendix for details! to arrive at

K ]g

]X
„Du~xW ,rW,t !,rW…•D@uz]zu#~xW ,rW,t !L 1¹ rW^g„Du~xW ,rW,t !,rW…DuW ~xW ,rW,t !&~rW,z!2^@¹ rWg#„Du~xW ,rW,t !,rW…DuW ~xW ,rW,t !&~rW,z!

1k0H K F ]2g

]X2 „2Du~xW ,2rW,t !,rW…1
]2g

]X2 „Du~xW ,rW,t !,rW…G„¹ (x,y)u~xW ,t !…2L ~rW,z!22^¹ rW
2
g„Du~xW ,rW,t !,rW…&~rW,z!

2 K ]g

]X
„Du~xW ,rW,t !,rW…]z

2Du~xW ,rW,t !L ~rW,z!22¹ rWK F ]g

]X
„Du~xW ,rW,t !,rW…¹ (x,y)u~xW ,t !2¹ rWg„Du~xW ,rW,t !,rW…G L ~rW,z!J

1^g~X,rW !]zuz~xW1rW,t !&~rW,z!1^g~X,rW !]zuz~xW ,t !&~rW,z!50. ~14!

By D@uz]zu#(xW ,rW,t) we mean the increment of the function inside the brackets, i.e.,D@uz]zu#(xW ,rW,t)[uz(xW1rW,t)]zu(xW

1rW,t)2uz(xW ,t)]zu(xW ,t). The resulting equation~14! can now be integrated over therW variable inR2. The free choice ofg
PS makes it possible to select values corresponding to a restricted neighborhood of a given vectorrW and, in the limit ofg
approaching a Dirac distribution, to describe a sharp value ofrW provided the corresponding mean values exist in the sens
distributions. Integrating Eq.~14! over the wholerW space will make the divergence terms disappear. Let us denoterW

integrals by^.&: ^w&[*R2w(rW)d2r . Equation~14! thus yields

K K ]g

]X
~X,rW !•D@uz]zu#~xW ,rW,t !L L ~z!

2^^@¹ rWg#~Du~xW ,t !,rW !DuW ~xW ,t !&&~z!1k0H K K F ]2g

]X2 „2Du~xW ,2rW,t !,rW…1
]2g

]X2 „Du~xW ,t !,rW…G„¹ (x,y)u~xW ,t !…2L L ~z!

22^^¹ rW
2
g„Du~xW ,t !,rW…&&~z!2 K K ]g

]X
~Du„xW ,t !,rW…]z

2Du~xW ,t !L L ~z!J 1^^g~X,rW !]z@uz~xW ,t !1uz~xW1rW,t !#&&~z!50.

~15!
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B. Evolution equation for the PDF

Let us introduce the stochastic variables:

X5Du~xW ,rW,t !, YW [~Yx ,Yy!5„Dux~xW ,rW,t !,Duy~xW ,rW,t !…, Z5@¹ (x,y)u~xW ,t !#2,

S5]z
2Du~xW ,rW,t !, T5]zuz~xW1rW,t !1]zuz~xW ,t !, W5DFuz

]u

]zG , ~16!

and the corresponding PDF

P̃~rW,z,X,YW ,Z,S,T,W!5P~rW,z,X!Q~rW,z,YW ,Z,S,T,W/X!, ~17!

whereQ(rW,z,YW ,Z,S,T,W/X) denotes a conditional probability. By replacing the spatial (x,y) averages with ensemble ave
ages, we can rewrite the mean values^^•&& as follows:

^^•&&~z!5E P̃~rW,z,X,YW ,Z,S,T,W!d2r dX d2Y dZ dS dT dW.

As a result, Eq.~15! now reads

E ]g

]X
~X,rW !q3~rW,z,X!P~rW,z,X!d2r dX2E @¹ rWg#~X,rW !qW 1~rW,z,X!P~rW,z,X!d2r dX

1k0H E ]2g

]X2 ~X,rW !@q2~2rW,z,2X!P~2rW,z,2X!1q2~rW,z,X!P~rW,z,X!#d2r dX

22E ¹ rW
2
g~X,rW !P~rW,z,X!d2r dX2E ]g

]X
~X,rW !q4~rW,z,X!P~rW,z,X!d2r dXJ

1E g~X,rW !q5~rW,z,X!P~rW,z,X!d2r dX50, ~18!

where we have introduced the conditional expectations on the scalar increments:

qW 1~rW,z,X!5^DuW /Du&, ~19!

q2~rW,z,X!5^~¹u!xy
2 /Du&5^@~¹xu!21~¹yu!2#/Du&, ~20!

q3~rW,z,X!5 K DFuz

]u

]zG Y Du L , ~21!

q4~rW,z,X!5^]z
2Du/Du&, ~22!

q5~rW,z,X!5^2]zuz1D]zuz /Du&. ~23!

The conditional averageqW 1 is simply defined by

qW 1~rW,z,X!5
1

P~rW,z,X!
E YW P̃~rW,z,X,YW ,Z,S,T,W!d2Y dZ dS dT dW,

and similar definitions are used for the other quantities.
Sinceg is an arbitrary test function fromS(R4), Eq. ~18! is a weak form of

2
]

]X
~ q̃3~rW,z,X!P~rW,z,X!!1¹ rW@qW 1~rW,z,X!P~rW,z,X!#

12k0

]2

]X2 @ q̃2~rW,z,X!P~rW,z,X!#22k0¹ rW
2
P~rW,z,X!1q5~rW,z,X!P~rW,z,X!50, ~24!

where
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q̃2~rW,z,X![ 1
2 @q2~2rW,z,2X!1q2~rW,z,X!# ~25!

and

q̃3~rW,z,X![k0q4~rW,z,X!2q3~rW,z,X!. ~26!

In this form, it is clear that only four independent closu
functions arise in Eq.~24!. So far, we have used in the der
vation of Eq.~24! only the assumption of homogeneity in th
(x,y) plane. In Sec. III C we shall investigate the cons
quences of the 2D isotropy assumption.

It is easily seen from the definitions~16! that the prob-
ability density functionP̃(rW,z,X,YW ,Z,S,T) possesses the fol
lowing symmetry property with respect to the reflection ofrW:

P̃~rW,z,X,YW ,Z,S,T!5 P̃~2rW,z,2X,2YW ,Z,2S,T!. ~27!

The probability density functionP(rW,z,X) thus satisfies
P(rW,z,X)5P(2rW,z,2X), and

qW 1~rW,z,X!52qW 1~2rW,z,2X!,

qi~rW,z,X!5qi~2rW,z,2X!, i 52,5,

qi~rW,z,X!52qi~2rW,z,2X!, i 53,4. ~28!

As a result,q̃2 in Eq. ~25! is simply equal toq2.

C. Local isotropy

For an arbitrary scalar fieldw and an arbitrary vector field

vW depending on the space variablesrW, the local isotropy con-
dition in the (x,y) plane can be expressed as follows.

2D Assumption. ^w&(rW,z)5^w&(r ,z), (r 5 urWu), and

^v i&(rW,z)5w(r ,z)(r i /r ) ( i 51, and 2!. The scalar function
w(r ,z) is obviously equal to@^v i&^v i&#1/2 or, equivalently, to
^v i&r i /r . We shall denote^v i&(r i /r )[^vL&, and write

^v i&(rW)5^vL&(r )(r i /r ). The stochastic variablesX, Z, S, W,
andT are scalars from the point of view of the 2D geome
in the (x,y) plane. Under the 2D assumption, the scalar fu
tions P(rW,z,X), q2(rW,z,X), q3(rW,z,x), q4(rW,z,X), and
q5(rW,z,X) are functions ofr only. The Laplace operator thu
simplifies to¹ rW

2
5r 21(]/]r )@r (]/]r )#. As far as the vector

qW 1(rW,z,X) is concerned, the isotropy assumption yield
qW 1(rW,z,X)5q1(r ,z,X)(rW/r ), where q1(r ,z,X) is a scalar
function of r. The symmetry condition~28! then implies:
q1(r ,z,X)5q1(r ,z,2X).

As far as the scalar functions are concerned, the symm
relation w(rW,X)5w(2rW,2X) implies simply w(r ,X)
5w(r ,2X) in the isotropic case. Thus

qi~r ,z,X!5qi~r ,z,2X!, i 52 and 5

and

qi~r ,z,X!52qi~r ,z,2X!, i 53 and 4.

Simplifying, furthermore,¹ rW@w(r )rW/r #5r 21(]/]r )(rw) and
using the notation
-

-

:

try

q̃3~r ,z,X!5k0q4~r ,z,X!2q3~r ,z,X!,

we can finally write Eq.~24! as

1

r

]

]r
r @q1~r ,z,X!P~r ,z,X!#

12k0H ]2

]X2 @q2~r ,z,X!P~r ,z,X!#

2
1

r

]

]r F r
]P

]r
~r ,z,X!G J 1

]

]X
@ q̃3~r ,z,X!P~r ,z,X!#

1q5~rW,z,X!P~r ,z,X!50. ~29!

This equation is the evolution equation of the PDF
P(r ,z,X), through the scalesr, in the assumption of isotropy
restricted to a plane perpendicular to an axisz. Note here that
the particular form of the operators gradient¹ rW and Laplac-
ian ¹ rW

2 in the 2D isotropy hypothesis~polar coordinates! is
different from their form obtained with the 3D isotropy hy
pothesis~written is spherical coordinates, as specified in S
II !.

IV. CONDITIONAL EXPECTATIONS

The conditional expectations closing Eq.~29! are pre-
sented in the following figures forRl540, with the Prandtl
number Pr51 and the mean gradientG51. Conditional ex-
pectations and PDF’s necessary to test Eq.~29! were com-
puted in a planeP'GW fixed (z5cst). It was found that the
results do not depend on the plane chosen, as expected
the overall homogeneity of the numerical flow. For this re
son the results presented here were obtained by avera
over the entire computational domain, which greatly im
proved the quality of the statistics.

Equations~19! and ~20! show thatq1 and q2 are almost
the same as those for the 3D isotropy theory which are p
sented in Fig. 1. In fact,q1 is exactly the same, being ass
ciated with the velocity increments computed in a plane p
pendicular to the mean gradient. The conditional expecta
q2 is here the horizontal squared temperature gradient c
ditioned by the temperature increment, thus it is proportio
to the total squared temperature gradient

q25^@~¹xu!21~¹yu!2#/Du&

50.853 2
3 ^@~¹xu!21~¹yu!21~¹zu!2#/Du&.

This relation between the horizontal squared tempera
gradient and the total squared temperature gradient em
sizes the fact that the mean temperature gradientGW induces
some anisotropy, the squared temperature gradient on tz
direction being sensibly larger than those for the two ot
directions. The conditional expectationsq̃3 andq5, involved
in the new additional terms are plotted in Fig. 11.
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In agreement with the theoretical constraints~28!, q3 and
q4 and thus alsoq̃3 should be odd functions ofX, whereasq5
tends to be an even function. We carried out the same an
sis for Rl570, the results being qualitatively the same. T
new conditional expectations take the anisotropy into
count. Figure 11 shows that all effects are present even in
simple case of the DNS of a fully homogeneous and iso
pic velocity turbulent field transporting a scalar with a me
gradient. In this case, the mean gradient is the only sourc
inhomogeneity and anisotropy so that the individual con
tional expectations can be expected to be explicitly relate
G.

Note here that, as was the case for the conditional exp
tationsq1 and q2 used for the 3D approach, we could n
derive so far any theoretical expression for these ‘‘inp
data’’ of the problem. Theq1 and q2 conditional expecta-
tions were determined using either experimental or D
data, as explained in Ref.@33#. Their behavior seems to b
qualitatively universal, especially for the small scales, wh
both conditional expectations become symmetric. A fi
qualitative tentative attempt to explain theq1 ‘‘A’’ shape
was made in Ref.@28#.

However, a theoretical calculation of these conditional

FIG. 11. Conditional expectations involved in Eq.~29!, q̃3 ~left!
andq5 ~right!, for the scales 3.5h, 7h, 17h, and 34h.
ly-

-
he
-

of
i-
to

c-

t

S

e
t

-

pectationsq1 and q2 should be done first of all in som
simple flows. A velocity field generated by a Lundgren vo
tex @44# presents a relatively simple expression for all
components. It may thus be possible to introduce a sc
blob into this flow, and to pursue its time evolution analy
cally, while this blob is enhanced by the vortex, diffused, a
finally completely dissipated. By knowing the velocity an
temperature distributions in each point of the space, it wo
be possible to compute the different conditional statistics

Concerning the five conditional expectations presented
this work, a similar analysis would be obviously very diffi
cult, asq3 , q4, andq5 are indeed very specific of the mixin
properties. Alternatively, an analysis of their symmetry pro
erties was performed in Sec. III C. Here these conditio
expectations are simply computed, as additional informat
about the mixing. Our present aim is mainly to affirm th
2D homogeneity and isotropy do influence the cascade
very small scales.

V. PLANAR ISOTROPY THEORY VALIDATION

A. Balance of the PDF equation

In this section we present how the additional terms
counting for anisotropy contribute to the total balance b
tween the terms. We consider the two criteria retained in S
II: comparison of the balance of terms of Eq.~29! at X50
and a modified Yaglom equation resulting from Eq.~29!.

We write Eq. ~29! in its dimensionless form, using th
same reference variables as for Eq.~3! ~see Ref.@33#!: lu ,
u8, and u8. The terms appearing in Eq.~29! will be num-
bered following the scheme: I1II2III 1IV1V50. The va-
lidity of the equation atX50 will be tested by adding the
two new terms to the terms I and II, and by comparing th
sum to III.

The five terms are presented in Figs. 12 and 13 for
caseRl540, Pr51, andG51.

The cancellation of the sum of all the terms of the equ
tion is very well verified for all the values ofX, as shown in
Fig. 14 for the scalesr 515h and 35h.

The balance of individual terms for varyingr at X50 is
represented in Fig. 15. The 2D isotropy equation is perfe
verified at all scales. The progress realized by our theor
directly measurable when comparing Figs. 15 and 3. A si
FIG. 12. The terms I, II, and III in Eq.~29!, for Rl540 and Pr51.
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lar agreement is obtained atRl580 ~Fig. 16!, except for the
magnitude order of the different terms, which is appro
mately doubled for a doubled Pe number~0.4 in Fig. 16 to be
compared with 0.2 in Fig. 15!. Therefore, the evolution equa
tion ~29! is well balanced, and can be used to predict
evolution of the PDF’s through the scales.

The modified Yaglom equation results from a multiplic
tion by X2 of both sides of Eq.~29!, an integration overX, a
multiplication by r, an integration~primitive calculus! with
respect tor, and finally dividing the result byr. More spe-
cifically, we compute the averages over the planeP as fol-
lows:

k0K ]2Du

]z2
DuL 2 K uz

]Du

]z
Du L

[E
2`

1`

@k0q4~r ,Du!2q3~r ,Du!#DuP~r ,Du!dDu

and

FIG. 13. The terms IV and V in Eq.~29!, for Rl540 and
Pr51.

FIG. 14. Comparison between terms II~continuous line! and
III 2I2IV2V, for the scales 15h (L) and 35h (h), for Rl540
and Pr51.
-

e

K ]uz

]z
~Du!2L [

1

2E2`

1`

q5~r ,Du!~Du!2P~r ,Du!dDu,

using the conditional expectations, and the probability d
sity functionP(r ,Du) of temperature incrementsDu.

For simplicity, we further note that

m~r ![k0K ]2Du

]z2
DuL 2 K uz

]Du

]z
Du L

and

n~r ![2 K ]uz

]z
~Du!2L .

We further obtain

2^Du~Du!2&12k0

]

]r
^~Du!2&1

2

r E0

r

m~ r̃ ! r̃ d r̃

1
2

r E0

r

n~ r̃ ! r̃ d r̃52N̄pr , ~30!

wherer̃ is a dummy variable, playing the role of the sepa
tion r, and N̄p5k0^(¹xu)21(¹yu)2& is the passive scala
‘‘planar’’ dissipation for temperature.

Using the conditional expectations presented in Sec.
we verify Eq. ~30! for different cases, after having writte
the equation in its dimensionless form, under the formA
1B1D1E5C, and keeping the same signification as
Eq. ~4!, for each of the terms. Here we present casesRl

540 and Pr51, but similar results are obtained for all th
other cases, i.e.,Rl540, Pr50.5; Rl570, Pr51; or Rl

580, Pr51. Everywhere the agreement is very good a
uniform throughout the scales.

The new termD1E adds a positive contribution to th
termA1B, which results in a very good compensation of t
termC that could not be obtained by the 3D isotropy theo
This source term has the tendency to equilibrate the termC
at a certain large scale, where effectively the advective te

FIG. 15. Comparison between the values atX50 of terms II
~continuous line! and III2I2IV2V ~d!, for Rl540 and Pr51.
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will be zero. The termE is simply the result of our hypoth
esis and of the calculation in the horizontal plane, but
most important term from the physical point of view is th
termD, which is the expression of the mean gradient throu
the scales. As expected, its role decreases as one re
smaller scales, but it is very important at large scales.
2D isotropy and homogeneity assumptions thus apply p
fectly to all scales for the investigated DNS of passive sca
mixing in a somewhat idealized configuration.

B. Prediction of the PDF evolution

In order to better emphasize the necessity of our appro
which uses planar isotropy, we are now interested in inv
tigating to what extent Eqs.~29! and~3! predict the intermit-
tent behavior of the PDF’s. In other words, what is the li
between intermittency and the assumption of 3D isotropy
planar isotropy? Such a study was already performed
Refs.@32,33# for the equation supposing 3D isotropy and f
relatively large Reynolds numbers. It was shown that,
small scales, this equation predicts the PDF evolution v
well. We will now investigate this problem forRl540, and
Pr51. At small Reynolds numbers, small and large scales
not decouple. Testing our approach at a small Reyno
number is therefore a stringent test. We perform the num
cal integration of Eqs.~3! and ~29!, starting from an initial
condition~the PDF and itsr derivative at a large scale!. The
integration method is the same as in Ref.@33#, i.e., an im-
plicit scheme with a negative scale step:dr 520.001. The
conditional expectations at each scale are simply injec
The numerical integration is first performed for Eq.~3!, start-
ing from 17h, where this equation is relatively well verifie
~see Fig. 9 of the present paper!. The PDF at 17h is not
Gaussian, and it contains in a way some information ab
the large scales of the mixing. Figure 18 shows the numer
solution of Eq.~3! for the scales 7h and 3.5h, the smallest
scale of the domain. These numerical solutions are comp
with the real PDF’s~dotted lines!. Relatively good agree
ment is obtained for small scales, especially atX50. Note
also the ‘‘specific’’ shape of the Eq.~3! numerical solution:
for relatively largeX, this solution presents tails which ar

FIG. 16. Comparison between the values atX50 of terms II
~continuous line! and III2I2IV2V ~d!, for Rl580 and Pr51.
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too abrupt in comparison with the real PDF’s. The sa
behavior was obtained for other data; see Fig. 11 of Ref.@32#
or Fig. 7 of Ref.@33#.

We may conclude that Eq.~3! presents a ‘‘predictability
domain’’ of @3.5h217h#, since the PDF at 17h is able to
lead to a realistic PDF at 3.5h, via this equation using 3D
isotropy. Starting from a scale larger than 17h, a nonrealistic
PDF is obtained, at any smaller scale.

Moreover, it could be noticed that the predictability d
main of the PDF equation using 3D isotropy could be cor
lated with the aspect atX50 of the conditional expectation
q1, which is directly related to the dynamic field. Figure 1
illustrates theq1(r ,X50) evolution, for two cases: Pe582
and 40. Note here that the computational size is 110h for
Pe540, and 250h for Pe582. Vertical arrows point to the
largest scale of the predictability domain of equation 3: 3h
for Pe582 ~see Ref.@33#!, and 17h for Pe540 ~present
work!. Equation~3! seems to describe the evolution throu

FIG. 17. Generalized Yaglom’s equation verification, forRl

540 and Pr51. The termA1B ~j! is the same as for the classic
Yaglom equation. The new terms areD ~n! andD1E ~* !. A1B
1D1E (d) is to be compared withC ~continuous line!.

FIG. 18. Numerical solution of Eq.~3! (Rl540, Pr51!, for the
scales 7h (s) and 3.5h (d). The initial condition is the PDF at
17h (L) which is not a Gaussian. No symmetrization has be
done.
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scales of the PDF rather well, for the scales whenq1(X
50) decays withr. These scales could be associated wit
dissipative zone. However, more needs to be unders
concerning the link between the behavior of the PDF eq
tion and the conditional expectations, especiallyq1.

As far as Eq.~29! is concerned, we showed that it is we
balanced for different Pe numbers and for all scales, whe
Eq. ~3! ~using 3D isotropy! is not. This result proves tha
once 2D homogeneity and isotropy are correctly taken i
account, a realistic PDF description can be deduced. Th
a very useful result, since the equation using planar isotr
could be further considered as a tool to study intermitte
in anisotropic and inhomogeneous turbulent mixing.

In Fig. 20, we show the numerical solution of Eq.~29!,
for the scales 17h, 7h, and 3.5h, which are to be compare
with the real PDF’s~dotted lines!. Very good agreement is
obtained for all the scales. Similar results are obtained
other Re numbers. The importance of this result consist
the fact that, starting from a large-scale PDF~in this case a
quasi-Gaussian PDF!, we can predict with good accuracy th
PDF’s until the very small scales of the domain.

The PDF at 3.5h in Fig. 18 is to be critically compared
with the corresponding PDF (3.5h) in Fig. 20, and both of
them with the real PDF. The value at the level of 1022 of the
real PDF at 3.5h is much better reproduced by the approa
using planar isotropy, than by Eq.~3!. The approach using
2D isotropy@Eq. ~29!# leads to a numerically computed PD
closer to the real PDF. Also, the predictability domain cov
all the scales of the domain. For Pe540, the predictability
domain of Eq.~3! is limited, whereas Eq.~29! does predict
all the statistics starting from a large-scale PDF~at 35h). In
particular, the intermittent behavior of the PDF is more c
rectly reproduced, through the equation obtained using
homogeneity and isotropy, and by taking into account so
terms which are the direct expression of the mean temp
ture gradient influence.

VI. CONCLUSION

Internal intermittency of the passive scalar strongly infl
ences the behavior of the PDF’s of temperature increme

FIG. 19. q1(r ,X50) evolution for different Pe´clet numbers:
Pe582 (L) and Pe540 (h).
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for the scales situated in the inertial and dissipative rang
In order to understand, qualitatively and quantitatively, t
evolution of the PDF shapes through the scales, we first
vestigate a previously obtained equation for the PDF evo
tion. The different terms of this equation, using 3D isotro
as a major hypothesis, are correctly balanced, for a rang
scales which includes the dissipative zone and only a sm
part of the inertial zone. The equation validation domain d
pends on the Pe´clet number of the mixing.

In order to link the small scale to the large injection sca
correctly, in a mixing created by a mean temperature gra
ent and a homogeneous, isotropic dynamic field, we rela
the 3D isotropy to a 2D one, by separating the direction

the anisotropy, parallel toGW , from the plane perpendicular t

GW , where 2D isotropy is supposed to hold. An equation
obtained, from which it is possible to obtain a generaliz
form of Yaglom’s equation. Additional conditional expect
tions are thus involved; all these quantities are related to
particular geometry of the mixing and play an important ro
in the general balance of the equation. The DNS data a
lyzed herein show that the level of agreement and the ra
of scales where our prediction is valid are significantly e
hanced when this equation is considered.

Therefore, the main result of the present paper is tha
correct prediction of the statistics of the passive scalar inc
ments at inertial and dissipative scales, smaller than the
jection scale, is possible provided the large injection sca
are properly taken into account, as it is done by the sup
mentary terms we calculated.
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FIG. 20. Numerical solution of Eq.~29! (Rl540, Pr51!, for the
scales 17h (h), 7h (s), and 3.5h (d). The initial condition is
the largest scale PDF (L) which is quasi-Gaussian. Dotted line
represent real PDF’s for the same scales. No symmetrization
been done.
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APPENDIX

We compute here the second term of Eq.~11!:

K ]2g

]X2 „Du~xW ,rW,t !,rW…@¹xWDu~xW ,rW,t !#2L ~rW,z!

5 lim
R˜`

1

pR2E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…@¹xWu~xW1rW,t !2¹xWu~xW ,t !#2dx dy

5 lim
R˜`

1

pR2 H E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…@¹xWu~xW1rW,t !#2dx dy

1E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…@¹xWu~xW ,t !#2dx dy

22E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…¹xWu~xW1rW,t !•¹xWu~xW ,t !dx dyJ , ~A1!

where

lim
R˜`

1

pR2E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…@¹xWu~xW1rW,t !#2dx dy

5 lim
R˜`

1

pR2E
(x21y2),R2

]2g

]X2 „2Du~xW ,2rW,t !,rW…@¹xWu~xW ,t !#2dx dy ~A2!

and

lim
R˜`

1

pR2E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…¹xWu~xW1rW,t !•¹xWu~xW ,t !dx dy

5 lim
R˜`

1

pR2E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…]zu~xW1rW,t !]zu~xW ,t !dx dy

1 lim
R˜`

1

pR2 F¹ rWE
(x21y2),R2

]g

]X
„Du~xW ,rW,t !,rW…¹ (x,y)u~xW ,t !dx dy

2E
(x21y2),R2

]¹ rWg

]X
„Du~xW ,rW,t !,rW…¹ (x,y)u~xW ,t !dx dyG , ~A3!

where¹ (x,y)5(]x ,]y) stands for the gradient operator in the (x,y) plane. In the last integral we use the identity

¹ rWF ]g

]X
~Du~xW ,rW,t !,rW !G5

]2g

]X2 „Du~xW ,rW,t !,rW…¹ (x,y)u~xW1rW,t !1
]¹ rWg

]X
„Du~xW ,rW,t !,rW…. ~A4!

The right-hand side of Eq.~A3! can then be written in the following way:
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lim
R˜`

1

pR2E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…]zu~xW1rW,t !]zu~xW ,t !dx dy

1 lim
R˜`

1

pR2 H ¹ rWE
(x21y2),R2

]g

]X
„Du~xW ,rW,t !,rW…¹ (x,y)u~xW ,t !dx dy

1E
(x21y2),R2

¹ (x,y)@¹ rWg„Du~xW ,rW,t !,rW…#dx dy

2¹ rWE
(x21y2),R2

¹ rWg„Du~xW ,rW,t !,rW…dx dy1E
~x21y2!,R2

¹ rW
2g(Du~xW ,rW,t !rW)dx dyJ

5 lim
R˜`

1

pR2E
(x21y2),R2

]2g

]X2 „Du~xW ,rW,t !,rW…]zu~xW1rW,t !]zu~xW ,t !dx dy

1 lim
R˜`

1

pR2 ¹ rWE
(x21y2),R2

F ]g

]X
„Du~xW ,rW,t !,rW…¹ (x,y)u~xW ,t !2¹ rWg~Du~xW ,rW,t !,rW !Gdx dy

1 lim
R˜`

1

pR2E
(x21y2),R2

¹ rW
2
g„Du~xW ,rW,t !,rW…dx dy.

The term^¹ (x,y)„¹ rWg(Du(xW ,rW,t),rW)…& is obviously equal to zero. As a result if we combine Eqs.~A1!–~A3! and the second
term on the right-hand side of Eq.~10!:

K ]2g

]X2 „Du~xW ,rW,t !,rW…@¹xWDu~xW ,rW,t !#2L ~rW,z!2 K ]2g

]X2 „Du~xW ,rW,t !,rW…@]zDu~xW ,rW,t !#2L ~rW,z!

5 lim
R˜`

1

pR2E
(x21y2),R2

F S ]2g

]X2 ~2Du~xW ,2rW,t !,rW !1
]2g

]X2 „Du~xW ,rW,t !,rW…D @¹ (x,y)u~xW ,t !#2

22¹ rW
2
g„Du~xW ,rW,t !,rW…Gdx dy22 lim

R˜`

1

pR2 ¹ rW

3E
(x21y2),R2

F ]g

]X
„Du~xW ,rW,t !,rW…¹ (x,y)u~xW ,t !dx dy2¹ rWg„Du~xW ,rW,t !,rW…Gdx dy. ~A5!
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